
In Computer Science, testing is a standard activity of the software development
process [3, 4]. However, little research has been carried out on the specific prob-
lems of testing neuronal simulation engines. We provide insight into our experi-
ence from building a comprehensive testsuite for NEST.

We found that with the growing complexity of the software and the growing num-
ber of developers, formalized and systematic testing becomes critical. The rapid
growth of neuroscience knowledge and the changing research directions require
an incremental/iterative development style [5] which extends over the full life time
of the product. Thus there is no single testing phase but the same tests need to
be carried out repetitively over a time span of many years.

The testsuite consists of a set of small unit tests and a shell script to execute the
scripts in a hierarchical order from simple to complex:

1. Self-tests: test the ability to report errors
2. Test that objects have correct default values and accept parameter changes
3. Compare simulation results with analytical results for simple scenarios
4. Check correctness of results with simpler algorithms
5. Test the convergence of results with decreasing simulation time step
6. Check for expected accuracy
7. Test the invariance of results with increasing numbers of processors
8. Test the higher-level user interface functions
9. Create regression tests for fixed problems

The testsuite should be run after compilation and installation by typing make in-
stallcheck in the build directory or using the command test in NEST.

A testsuite for a neural simulation engine
Jochen Martin Eppler1,2, Rüdiger Kupper1, Hans Ekkehard Plesser3, Markus Diesmann4

eppler@biologie.uni-freiburg.de, ruediger.kupper@gmail.com, hans.ekkehard.plesser@umb.no, diesmann@brain.riken.jp

References
[1] M.-O. Gewaltig and M. Diesmann (2007). NEST (Neural Simulation Tool). Scholarpedia 2(4), 1430.

[2] H.E. Plesser et al (2007). Efficient parallel simulation of large-scale neuronal networks on clusters of
multiprocessor computers. Euro-Par 2007: Volume 4641 of LNCS. doi:10.1007/978-3-540-74466-5

[3] I. Sommerville (2007) Software Engineering (8th edition). Addison-Wesley. ISBN: 978-0321313799

[4] K. Beck and C. Andres (2004). Extreme programming explained: Embrace change (2nd edition). Ad-
dison-Wesley. ISBN: 978-0321278654

[5] M. Diesmann and M.-O. Gewaltig (2002). NEST: An environment for neural systems simulation.
Forschung und wissenschaftliches Rechnen, GWDG-Bericht. Pages 43-70. Ges. für Wiss. Daten-
verarbeitung, Goettingen

[6] J.M. Eppler et al (2009). PyNEST: A convenient interface to the NEST simulator. Frontiers in Neu-
roinformatics. 2:12. doi:10.3389/neuro.11.012.2008

NEST can be downloaded from the homepage of the NEST Initiative at
www.nest-initiative.org

● NEST [1, 2] is a simulator for large networks of spiking neurons that runs
on workstation computers and clusters.

● We present experience from the testsuite of NEST, a framework for sys-
tematic unit tests. Its key features are

● Hierarchical tests: Basic features are tested before high-level features

● Tests for the parallel and distributed execution of NEST

● A unit-test library that eases the task of writing tests for NEST

● In a companion contribution, we give a general demonstration of NEST
during the demo-session (D11).

Introduction

For many neuron models, analytical solutions for basic properties exist. Examples
are the time to threshold crossing, given a specific input, or the correct reset of
the membrane potential. The analytical solutions are stated in the testscript and
compared to the results from the simulation. An error is issued if the analytical
and simulated results disagree.

Testing the convergence of a simulation result with decreasing simulation step
size is a powerful method. However, the simulation may still converge to the
wrong value or converge unexpectedly slow because of errors. Thus, comparison
with analytical results is an invaluable additional tool.

An important requirement for this method of testing is the availability of a high-
level math programming language to state expressions in readable form. To this
end, SLI has been extended with a parser for standard infix math notation.

Comparison with analytical results

1
Honda Research Institute Europe
Carl-Legien-Str. 30
63073 Offenbach/Main, Germany
http://www.honda-ri.de

2
Bernstein Center for Computational Neuroscience
Hansastraße 9a
79104 Freiburg, Germany
http://www.bccn.uni-freiburg.de

4
RIKEN Brain Science Institute &
Computational Science Research Program
Wako City
351-0198 Saitama, Japan
http://www.brain.riken.jp

3
Dept. of Mathematical Sciences and Technology
Norwegian University of Life Sciences
1432 Ås, Norway
http://www.umb.no

NEST provides a collection of functions to ease the task of writing consistent unit
tests in compact and human readable form. All of these functions test a certain
criterion and quit NEST with an exit code not equal to 0 in case the criterion is not
fulfilled. As usual in shell programming, an exit code of 0 is interpreted as suc-
cess. The most important functions in the unittest library are:

assert_or_die - Check the given condition and quit with exit code 1 if it fails
or with exit code 2 if it raises an error.

pass_or_die - Execute a code block and quit with exit code 2 if it raises an
error.

fail_or_die - Execute a code block and quit with exit code 3 if it does not
raise an error.

failbutnocrash_or_die - Execute a code block and quit with exit code 3 if
it does not raise a scripterror. To make the function robust against crashes of
NEST (like e.g. segmentation faults or failed C assertions) the code block is
executed in a new instance of NEST.

crash_or_die - Execute a code block and quit with exit code 3 if NEST does
not crash. This also executes the code block in a new NEST instance, but
expects it to crash (e.g. segmentation fault or failed C assertion).

distributed_assert_or_die - Checks whether the given code block is in-
dependent of the number of processes. This function reruns the code block
with different numbers of MPI processes and compares the result. The equal-
ity of the results is tested with the serial version of assert_or_die.

ToUnitTestPrecision - Reduce the argument to the given precision. This
function is needed to convert different floating point numbers to a the same
precision and thus allow to compare them.

InflateUnitTestData - Reformat compressed reference data. Reference
data (e.g. analytical results) is stored in the test script in a human readable
form and to allow to comment the data appropriately. To compare the refer-
ence data to the results from the simulation, this function reformats the data
into a machine readable format.

NEST's unittest library

NEST runs on a range of architectures, from ordinary desktop computers to large
computer clusters with thousands of processor cores. Thus, testing threaded and
distributed simulation is crucial.
The goal is to test the invariance of simulation results with respect to the number
of jobs. This is important, because a simulation in NEST should not be dependent
on the details of parallelization.
Because the mpirun command differs in different MPI implementations, the user
defines the SLI function mpirun in NEST's configuration file ~/.nestrc, which
tells NEST how to run distributed simulations.
The shell script nest_serial is used to run serial test scripts, while the script
nest_indirect is used to re-spawn a distributed version of NEST with a given
number of processes.

Parallel and distributed tests

PyNEST [6] is the new user interface of NEST. It provides Python functions that
wrap the basic NEST functions for the creation, connection and manipulation of
neurons and devices. In order to verify the correctness of the wrapper functions
of the PyNEST high-level API, we have created test scripts for them based on the
unittest library (http://docs.python.org/library/unittest.html) for
Python. These scripts are run by the top-level testsuite script as part of the nor-
mal testing procedure.

PyNEST tests

The testsuite currently contains 21 self tests for basic functionality, 67 unit tests,
13 regression tests, 5 tests for parallel and distributed simulations, and 42 tests
for the PyNEST high-level API. It also contains 47 manual tests, which are more
complex and require manual judging of correctness.

We currently plan two main extensions to the testsuite framework:

The first is full support for test driven programming. This means that the test
scripts for a new feature are written prior to the actual code. In an iterative way,
this ensures that the finished code fulfills all requirements that were specified.

The second extension is the automatic execution of the examples in the docu-
mentation. The user documentation already contains a lot of examples for the
correct usage of a function and provides an easy way to state invariants for func-
tions directly, instead of writing separate tests.

Current status and outlook

	Slide 1

