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Zusammenfassung

Die Simulation biologischer neuronaler Systeme entwickelt sich immer mehr zu einem Grundpfeil-
er der modernen Neurobiologie. Dies hat vor allem zwei Gründe: Zum einen sind Simulationen
ein wichtiges Werkzeug um die Flut anatomischer und physiologischer Daten integrieren und
auf Konsistenz testen zu können, zum anderen können durch Simulationen Fragen geklärt
werden, die sich experimentell oder mit analytischen Methoden nicht beantworten lassen.

Das Gehirn von Wirbeltieren ist jedoch eine höchst komplexe Struktur mit bis zu 1012

Nervenzellen, den sogenannten Neuronen. Jedes dieser Neuronen erhält Eingänge von ca. 104

Neuronen und produziert seinerseits Signale für ebensoviele Neuronen.
Die über die große Zahl von Verbindungen (Synapsen) vermittelte Wechselwirkung zwis-

chen den Neuronen erfordert spezialisierte Simulationsprogramme. NEST ist ein Simulator für
biologische neuronale Netze, der für die Simulation großer Netzwerke von sogenannten Punk-
tneuronen optimiert ist. Er läuft auf einer Vielzahl von Architekturen, von normalen Desktop-
Computern bis zu Supercomputern mit mehreren tausend Prozessoren. Diese Arbeit beschreibt
vier wichtige Erweiterungen für NEST:

• Der Algorithmus zu Simulationssteuerung wurde optimiert, um sowohl threadbasierte
als auch verteilte Simulationen zu erlauben. Die Kommunikation wurde auf Basis des
MPI-Standards (Message Passing Interface Forum, 1994) implementiert und erweitert
die bereits in Eppler (2006) vorgestellten Methoden. NEST wurde so angepaßt, dass
Neuronen nicht nur innerhalb eines Prozesses miteinander kommunizieren können, son-
dern auch über Prozessgrenzen hinweg. Damit wird die Flexibilität von NEST mit der
Performance des Pilotprojekts Paranel verbunden (Morrison et al., 2005).

• Es wurden Funktionen für die Kommunikation zwischen dem Simulationskern, dem In-
terpreter und einer neuen Benutzerschnittstelle als Modul für die Programmiersprache
Python implementiert (PyNEST; Eppler et al., 2009). Im Gegensatz zum üblichen Ansatz,
bei dem die Klassen und Funktionen direkt in Python zur Verfügung gestellt werden, bi-
etet PyNEST eine minimale Schnittstelle zum Interpreter von NEST und erlaubt dadurch
dessen vollständige Steuerung.

• Im Rahmen des EU Projektes FACETS haben wir an der Implementation und Konzeption
einer Programmierschnittstelle mitgewirkt, die verschiedene Simulatoren steuert (PyNN;
Davison et al., 2008) und so die einfache Übertragung von Simulationsspezifikationen
auf andere Simulatoren erlaubt. Dies ist ein wichtiges Mittel um die Reproduzierbarkeit
von Simulationen zu ermöglichen und die Unabhängigkeit der Modelle von ihrer Imple-
mentation zu gewährleisten.

• Um Simulationen unterschiedlicher Detailstufen zu verbinden wurde eine Anbindung an
die MUSIC Bibliothek (Ekeberg & Djurfeldt, 2008) geschaffen. Dadurch kann NEST
zur Laufzeit Daten mit anderen Simulatoren und Programmen austauschen. Dies ist
ein wichtiger Schritt, um die Lücke zwischen verschiedenen Modellierungsansätzen zu
überbrücken und einen effizienten Arbeitsablauf vom Zugriff auf eine Datenbank bis zur
Visualisierung zu ermöglichen.

Die oben beschriebenen Änderungen wurden nach internen Tests direkt in die öffentliche
Release von NEST übertragen und so den Benutzern zur Verfügung gestellt.





ix

Contents

Communication architectures for NEST i
Contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Declaration of publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 Scientific context of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aims of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The brain and its building blocks . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Models of the nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Biological neural networks . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Simulators for biological neural networks . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 The neural simulation tool NEST . . . . . . . . . . . . . . . . . . . . . 16

1.6 The software crisis in neuroscience . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.1 Implications of the software crisis for NEST . . . . . . . . . . . . . . . 19

1.7 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.1 Communication inside the simulator . . . . . . . . . . . . . . . . . . . 21
1.7.2 Communication between user and simulator . . . . . . . . . . . . . . . 22
1.7.3 Communication between different simulators . . . . . . . . . . . . . . . 23

1.8 Character of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Communication inside the simulator 27
2.1 The history of NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 SYNOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 NEST 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Paranel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.4 Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5 NEST 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Cache efficient software design . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Network representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



x CONTENTS

2.3.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Storage of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Storage of connections . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.5 Memory requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Network creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Factories for nodes and connections . . . . . . . . . . . . . . . . . . . 39

2.4.2 Distribution of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Compatibility checks for connections . . . . . . . . . . . . . . . . . . . 39

2.4.4 Inspection and manipulation of connections . . . . . . . . . . . . . . . 40

2.5 Network update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Event buffering and delivery . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Readout of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.1 Performance on multi-processor machines . . . . . . . . . . . . . . . . 47

2.7.2 Performance on small clusters . . . . . . . . . . . . . . . . . . . . . . 48

2.7.3 Performance on HPC facilities . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Communication between user and simulator 53
3.1 Languages for neural simulation specification . . . . . . . . . . . . . . . . . . 54

3.1.1 The simulation language interpreter of NEST . . . . . . . . . . . . . . 55

3.1.2 Towards a general language for computational neuroscience . . . . . . . 56

3.2 A Python based user interface for NEST . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Problems in the prototype . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Requirements for a Python based user interface . . . . . . . . . . . . . 60

3.3 The architecture of PyNEST . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 The low-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 The high-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 From Python to SLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 From SLI to Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Installation and build process . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.1 Support for NEST extension modules . . . . . . . . . . . . . . . . . . 71

3.7 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 A common interface for different simulators 75
4.1 PyNN: An abstraction layer for simulators . . . . . . . . . . . . . . . . . . . . 76

4.2 The architecture of PyNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Simulator-specific backends . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Unified data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Random number generators . . . . . . . . . . . . . . . . . . . . . . . . 78



xi

4.3 Benefits of using PyNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Community driven development . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Communication between different simulators 81
5.1 Levels of organization in the brain . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Multi-scale models of the brain . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Interoperability between simulators . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Offline interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Online interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 The multi-simulator coordinator MUSIC . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Requirements for using MUSIC . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Auxiliary tools for MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Simulator support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 The MUSIC interface for NEST . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.1 Sending events to MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.2 Receiving events from MUSIC . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Discussion 97
6.1 Communication inside the simulator . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Communication between user and simulator . . . . . . . . . . . . . . . . . . . 99
6.3 A common interface for different simulators . . . . . . . . . . . . . . . . . . . 99
6.4 Communication between different simulators . . . . . . . . . . . . . . . . . . . 100
6.5 Productization of NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Character of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A Publications 105
A.1 Efficient parallel simulation of large-scale neuronal networks on clusters of mul-

tiprocessor computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Multithreaded and distributed simulation of large biological neuronal networks . 119
A.3 PyNEST: A convenient interface to the NEST simulator . . . . . . . . . . . . 123
A.4 A Python interface to NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.5 PyNN: A common interface for neuronal network simulators . . . . . . . . . . 141
A.6 Run-time interoperability between neuronal network simulators based on the

MUSIC framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 173





xiii

Figures

1.1 Neural connectivity in the cortex . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Different branches of neuroinformatics . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Regions of the vertebrate brain . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Brains of different vertebrates, seen from above . . . . . . . . . . . . . . . . . 5
1.5 Diagram of a typical myelinated vertebrate neuron . . . . . . . . . . . . . . . . 6
1.6 Different neuron types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Organization of the cortex into layers and columns . . . . . . . . . . . . . . . 8
1.8 Cortical areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Sketch of the abstraction levels for neuron models . . . . . . . . . . . . . . . . 10
1.10 Modeling single neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11 Different forms of plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.12 Input summation in the integrate-and-fire neuron . . . . . . . . . . . . . . . . 14
1.13 Scalability of NEST 1 and NEST 2 with respect to number of processors . . . 22

2.1 Scalability of NEST 1 and Paranel with respect to number of processors . . . . 30
2.2 Data structure for the storage of nodes . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Flow of events from source to target node . . . . . . . . . . . . . . . . . . . . 36
2.4 Different possibilities for the storage of connections . . . . . . . . . . . . . . . 36
2.5 The data structure for connection storage . . . . . . . . . . . . . . . . . . . . 37
2.6 Sequence diagram of the handshake to check node and event compatibility . . 40
2.7 Flow chart of the scheduling algorithm in NEST . . . . . . . . . . . . . . . . . 42
2.8 Flow chart of the logic for sending events . . . . . . . . . . . . . . . . . . . . 43
2.9 Flow chart of the resizing algorithm for communication buffers . . . . . . . . . 45
2.10 Sequence diagram of the collection of data across threads . . . . . . . . . . . . 46
2.11 Scalability of NEST 1 and NEST 2 on multi-processor machines . . . . . . . . 48
2.12 Scalability of NEST 2 and Paranel on small computer clusters . . . . . . . . . 49
2.13 Scalability of NEST 2 on large computer clusters . . . . . . . . . . . . . . . . 50

3.1 The architecture of PyNEST . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Example of plotting with the voltage trace module . . . . . . . . . . . . . . 65
3.3 Conversion of a DoubleDatum to a Python object . . . . . . . . . . . . . . . . 69

4.1 The architecture of PyNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Different levels of organization in the nervous system . . . . . . . . . . . . . . 82
5.2 Sketch showing the relation of different modeling scales . . . . . . . . . . . . . 84



xiv Figures

5.3 Illustration of a typical multi-simulation using MUSIC . . . . . . . . . . . . . . 86
5.4 Visualization tools to be used with MUSIC . . . . . . . . . . . . . . . . . . . . 88
5.5 Network representation for the music out proxy . . . . . . . . . . . . . . . . 90
5.6 Sequence diagram for the NEST-MUSIC interaction using a music out proxy 91
5.7 Network representation for the music in proxy . . . . . . . . . . . . . . . . . 93
5.8 Sequence diagram for the NEST-MUSIC interaction using a music in proxy . 94

6.1 Number of code lines changed per revision . . . . . . . . . . . . . . . . . . . . 102
6.2 Lines of code in NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



1

Chapter 1

Introduction

To understand how the brain stores and processes information is one of the biggest scientific
challenges of our time. The complexity of this undertaking becomes evident if one looks at
the number of elements involved: the human brain, for example, consists of up to 1012 nerve
cells, each receiving input from approximately 104 other nerve cells and generating output to
about as many. This means that already a single cubic millimeter of cortex contains at least
105 cells and about 109 connections (Figure 1.1; Braitenberg & Schüz, 1998). Simulations
have become a valuable tool to understand the mechanisms behind the function of the brain.

(A) (B)

(C)

Figure 1.1: Neural connectivity in the cortex (taken from Abeles, 1991): (A) Stained axons
in the cortex. The empty spaces are due to blood vessels and cell bodies. (B) A: neuronal
densities in the motor cortex in various animals; B: neuronal densities in various cortical regions
in the human; C: neuronal densities in the various cortical layers in the visual cortex in the cat.
(C) Typical composition of cortical tissues.
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1.1 Scientific context of this thesis

In 1891, Heinrich Wilhelm Gottfried von Waldeyer-Hartz formally proposed the neuron doctrine,
which states that the nervous system is made up of discrete individual cells, called neurons
(Barlow, 1972; Shepherd, 1991). Today, it is a commonly recognized fact that the interaction
between neurons is the basis for brain function on all levels, starting with simple reflexes up to
complex cognitive tasks such as planning, reasoning and consciousness.

The investigation of the nervous system on a molecular and cellular level in recent years
lead to considerable insights into the function of the brain. Examples are the mechanisms
that underlie plasticity and learning, attention, the function of the visual and auditory systems,
motor control, and many more. It is also well known that malfunctions in the communication
between neurons, the structure of the brain, and its bio-chemical processes can lead to severe
disorders in higher brain function. Brain research made it possible to better understand the
causes for Alzheimer’s and Parkinson’s disease, depression, epilepsy, deficits in auditory and
visual processing, and other diseases. These insights allow to find remedies for the disorders.
Recent examples are drugs for the treatment of depressions, neural prosthetics like cochlear
implants, or devices for deep brain stimulation to break the synchronization, which causes the
tremor in Parkinson’s disease and some forms of epilepsy.

Classical neuroscience tries to gain understanding of the brain circuitry on the microscopic
level by investigating the properties of single neurons and networks thereof in the intact brain
of animals and humans (in vivo), and in preparations of brain slices and cell cultures (in vitro).
Neuroscientists use a multitude of methods (e.g. microscopy, electrophysiology, and different
imaging techniques) in their day-to-day work to measure the electrical and chemical properties
and the connectivity of neurons in the brains of different species. These investigations provide
important insights into the structure of the brain and into the function of single neurons and
small populations of neurons. However, because of the complexity of the studied systems,
they do not provide functional explanations for larger brain structures and it is often hard to
identify the relevant circuits and connectivity patterns due to the high packing density of the
tissue (see Figure 1.1).

Mathematical models of the nervous system and its parts are a valuable method for under-
standing the working principles in the brain and to integrate the huge amount of data produced
by classical neuroscience. In computational neuroscience, researchers create and use such mod-
els to find hypotheses that connect the microscopic elements of the brain to functional units.
These hypotheses can be tested analytically and, if too complex, in computer simulations, to
understand how a specific structure creates a certain function. Researchers in different fields
are working on different levels of detail, from the molecular level of ion channels and molecule
dynamics over detailed morphological models of neurons to functional models of whole brain
areas (Dayan & Abbott, 2001).

One branch of computational neuroscience is concerned with the application of computer
and information science methods to problems in neuroscience. This branch is referred to as
neuroinformatics. The research goals of neuroinformatics are databases for experiments and
simulation, brain atlases, software for the analysis and visualization of neuroscientific data and
the development of software tools to support neuroscience in general (see Figure 1.2). One
part of neuroinformatics is dedicated to the development of methods and algorithms for the
simulation of neural systems.
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Figure 1.2: Different branches of neuroinformatics (illustration by courtesy of Susanne Kunkel):
The field of neuroinformatics is positioned a the intersection of neuroscience and information
science. The lower part shows the different research areas.

The simulation of neural networks is an ambitious task that requires sophisticated software.
Many different attributes contribute to the success of a simulator. The most visible part of a
simulator is the user interface. It should be convenient and easy to use, and allow a researcher
to get started quickly by keeping the learning curve low. The simulator has to support the
storage, update, and communication of a large number of neurons and connections in an
efficient way. This can only be achieved by using efficient algorithms and data structures to
represent and execute models. Moreover, it is important that the simulator works together
nicely with other tools. This includes tools for stimulus generation, storing results in databases,
analyzing and visualizing the data, and the communication with other simulators.

1.2 Aims of this thesis

The aim of this thesis is to present novel solutions for the problems connected to the simulation
of biological neural networks, namely the algorithms and data structures for the communication
inside the simulator, the communication between the user and the simulator, and for the inter-
operability between different software packages in the field of (computational) neuroscience.
Studying the NEST simulation software (Gewaltig & Diesmann, 2007) and its requirements as
an example, this thesis contributes to three main areas:

1. Technology for large-scale simulations of brain structures.

2. Reliable interfaces to set up and control such simulations.

3. Interoperability of simulation tools specialized at different levels of abstraction.
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The communication architectures designed and developed in this thesis allow different
processes, software layers, and applications to communicate efficiently with each other. This
includes the data structures and algorithms for multi-threaded and distributed simulations of
neural networks, the communication between new user interfaces of NEST and the simulation
engine, and interfaces to share data with other applications at run-time.

1.3 The brain and its building blocks

The brain is the largest part of the central nervous system of all vertebrates and most in-
vertebrates. It is located at the end of the spinal cord and consists of several regions (see
Figure 1.3). These can be distinguished by their epigenetic origin and by their role in the
information processing. The most remarkable region in mammals is the cerebral cortex, which
is the place for the higher cognitive abilities that differentiate them from other vertebrates.
The structure of the following paragraphs on brain regions is roughly based on the description
in Kirsch (2010).

(A) (B)

RhombencephalonDiencephalonTelencephalon Mesencephalon Pons MedullaCerebellum Spinal cord

Figure 1.3: Regions of the vertebrate brain: (A) Regions in the embryonic brain (modified
from Surachit, 2007). The rhomencephalon differentiates into cerebellum, pons, and medulla
during epigenesis. (B) Regions in the human brain (cross section; modified from Looie, 2008,
based on Ranson, 1920).

The spinal cord is the part of the central nervous system that extends from the basis of
the skull to the first or second lumbar vertebra. The spinal cord receives sensory information
from the skin, the joints, and the muscles of the body and contains motor neurons, which are
responsible for willful movements as well as for reflexes. Additionally, it receives information
from the inner organs and contains neurons that control numerous vegetative functions.
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Following the spinal cord, the next three components of the central nervous system are
the medulla oblongata, the pons and the mid brain, which form a continuous structure, called
brain stem. It receives sensory information from the joints and skin of the head, the neck, and
the face, and contains motor neurons that control the movement of head and neck. The brain
stem also plays an important role in hearing, tasting, and in the sense of balance.

The medulla oblongata is an extension of the spinal cord, with which it has strong structural
and functional similarities. Together with the pons, the medulla is responsible for the regulation
of blood pressure and respiration.

The pons (latin for “bridge”) contains a large number of neurons, which connect the
information from both hemispheres of the end brain and the cerebellum.

The cerebellum has a strongly grooved surface and consists of several lobes, each of which
has a specific function. The cerebellum receives sensory information from the spinal cord,
motor information from the cortex, and information about balance from the vestibular system
in the inner ear. The convergence of these inputs allows the cerebellum to coordinate the
temporal sequence of movements, and plan the activation of skeletal muscles. In addition it
plays a role in the coordination of head and eye movements.

The mesencephalon (mid brain) is the smallest part of the brain stem. Some of its regions
play an important role in the direct control of eye movements, while others contribute to
the control of skeletal muscles. The mid brain also constitutes an important relay station for
auditory and visual signals.

Thalamus and hypothalamus form the diencephalon (interbrain). Its name originates from
its position between mid brain and the two hemispheres of the end brain. The thalamus
processes and relays most sensor and motor information that enters the cortex. In addition it
is most likely responsible for the regulation of alertness and the emotional aspects of perception.
The hypothalamus controls the autonomic nervous system, and, via the pituitary gland, the
release of hormones. It has extensive connections to the thalamus, the mid brain, and to the
regions of cortex, which receive information from the autonomic nervous system.

Figure 1.4: Brains of different vertebrates, seen from above (modified from Kirsch, 2010): (A)
Bony fish; (B) Amphibian (frog), (C) Reptile; (D) Bird (dove); (E) Mammal (dog). The colors
denote the same regions as in Figure 1.3.
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The telencephalon (end brain) by far constitutes the largest region of the brain. It consists
of the cerebral cortex, the white matter (mainly myelinated axons and glial cells), and three
aggregations of nerve cells, called nuclei (basal ganglia, hippocampus, and amygdala). The
term cerebral cortex literally means “brain rind” and characterizes the superficial layers of tissue
of the two end brain hemispheres. In humans, the cortex is strongly grooved, which increases
the surface, without increasing the volume of the brain. The telencephalon is responsible for
willful movements, the analysis of sensory input, and plays a crucial role in all higher cognitive
processes.

Although the brains of different vertebrates differ considerably on a macroscopic scale
(Figure 1.4), they still consist of the same microscopic building blocks: nerve cells (neurons)
that communicate via electric pulses (action potentials) over connections called synapses.

Figure 1.5: Diagram of a typical myelinated vertebrate neuron (modified from Villarreal, 2007):
The red neuron receives connections from the orange neurons and sends connections to the
green neuron. The blue structures are Schwann cells that wrap around the axon and act as
insulators to prevent the proliferation of a signal to other axons. The inset (circle) shows
the structure of a synapse in detail, with neurotransmitters on the presynaptic bouton, and
receptors on the postsynaptic side. Neurotransmitters are stored in synaptic vesicles before
they are released into the synaptic cleft.

The typical structure of a vertebrate neuron is shown in Figure 1.5. Neurons actively
maintain an electrical potential across their membrane through various biochemical processes.
Ion pumps constantly transport specific ion types out of the cell or into the cell. The cell
membrane contains ion channels that are permeable only for specific types of ions (e.g. Na+,
K+, or Cl−) or larger charged molecules. Most of the channels are not static, but are opened
or closed depending on the membrane potential of the cell. In the resting state, the membrane
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potential fluctuates around a resting potential, which lies around -70 mV for a typical pyramidal
cell in the cortex. The fluctuations are caused by the irregular input the neuron constantly
gets from other cells that have connections to it. If the fluctuations of the membrane potential
reach a certain threshold value in the cell body, the cell fires an action potential (spike),
which is propagated along the axon to other neurons. An action potential is a short but large
excursion of the membrane potential, which travels along the axon as a wave of opening and
closing ion channels in the membrane. After the spike, the neuron is inactive (refractory) for
a certain time in the order of some milliseconds. The inactivity is caused by an inactivation
of the channels that contributed to the action potential. If the traveling wave reaches a
synapse, it leads to the release of a chemical neurotransmitter into the synaptic cleft. This is
registered by the receptors in the membrane of the postsynaptic cell. Depending on the type
of the postsynaptic neuron and the synapse, the receptors trigger a rise (excitation) or decline
(inhibition) of the membrane potential in the postsynaptic cell, which propagates to the cell
body (Nicholls et al., 2001; Kandel et al., 2000).

Figure 1.6: Different neuron types (taken from Stufflebeam, 2008, based on drawings made by
Santiago Ramon y Cajal): Neurons in different brain areas and in different laminar locations
differ in their shape. Shown are the most important classes of neurons.

These basic working principles are the same in all neurons. However, different types of
neurons exist. They have different shapes (see Figure 1.6) and express different genes, which
result in the embedding of different molecules and channels into their membrane, and thus
in different electrical properties of the whole cell. For example, if a constant step-current is
applied to the neuron, some neurons respond by firing an initial burst of spikes and are silent
after that, although the stimulus is still present (bursting neuron). Other neurons respond by
firing constantly with a high (fast spiking neuron) or a low (regular spiking neuron) rate. The
different types can be classified using electrophysiological methods (e.g. Nowak et al., 2003).
Likewise, different types of neurons react differently to spike input from other neurons. Another
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difference between neurons is the type of synapses they make. Dale’s principle (Eccles et al.,
1954) states that a neuron either makes only inhibitory or excitatory connections, independent
of the type of the neuron it connects to. The type of neurons one finds when looking into the
brain depends on the brain area and the laminar position.

(A) (B)

Figure 1.7: Organization of the cortex into layers and columns: (A) Nissl stain reveals the
different layers (I - IV) of the cortex quite clearly (taken from Schmolesky, 2000). (B) Columnar
structure of the cortex (taken from Szentágothai, 1978). A column is believed to provide a
functional unit that is replicated all over the cortex and carries out the same operation on
different input data.

Vertically, neurons in the cortex are arranged in (up to) six distinct layers that are clearly
visible if brain slices are stained using histo-chemical methods like for example the Nissl method.
The concrete number of layers depends on the brain area and species. One theory is that each
layer performs a specific role in the information processing: for example, neurons in the layers
II and III project mainly to other areas of the cortex, while those in the layers V and VI
project primarily out of the cortex, e.g. to the thalamus. Layer IV is the main input layer.
In primary sensory areas, layer IV receives synaptic connections from outside the cortex (e.g.
from thalamus), while in higher cortical areas it receives information from lower areas. Neurons
in layer IV mostly make local connections to other cortical layers. This means that layer IV
receives incoming sensory information and distributes it to the other layers for further processing
(Thomson & Bannister, 2003; Binzegger et al., 2004). Horizontally, the neurons are arranged
in columns that are believed to be small microcircuits that are repeated all over the brain and
carry out the same function but on different input signals (Szentágothai, 1978; Schrader et al.,
2009). The microscopic organization of the cortex is shown in Figure 1.7.
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Figure 1.8: Cortical areas (taken from Encyclopædia Britannica, 2007): The colored areas show
the separation of the cortex into areas for the processing of different responsibilities. Shown
are the areas for processing auditory, visual, and sensory information, for speech processing,
and for motor control.

On a coarser scale, the brain is organized into areas that are specialized for a specific
task, e.g. processing of sensory information for the different modalities (audition, vision and
somato-sensory), motor control, and higher cognitive functions like speech recognition and
production, or object recognition (Brodmann, 1905). Although this macroscopic organization
is known for over a century now, current research is still concerned with the investigation
of the detailed function of the different areas. The function of the brain emerges from the
interaction between the areas, which are connected by long-range connections to integrate the
information accumulated in different parts of the brain. Figure 1.8 shows how the different
areas are distributed over the surface of the cortex.

1.4 Models of the nervous system

Since the discovery of the basic building blocks of the nervous system, researchers in the
natural sciences try to understand the working principles of the brain, and engineers try to
utilize their computational power for technical applications.

1.4.1 Artificial neural networks

In Computer Science and Engineering, a method called artificial neural network is used since the
1940s. It is based on the idea that brain function can be understood in terms of many identical
processing elements (the neurons) with weighted connections between them. These networks
are successfully used for pattern classification, completion and storage, for solving optimization
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tasks, and for machine learning tasks in general. Prominent examples for such networks are the
Perceptron (Rosenblatt, 1958), associative memories like Hopfield Nets (Hopfield, 1982), and
Self-Organizing Maps (Kohonen, 1984). In this framework, a neural network is described by a
real valued state vector, a weight matrix, and a transfer function, typically a sigmoid function
such as tanh(x). A learning rule is used to optimize the weight matrix, such that a given
target function is approximated. The networks used in this domain are usually quite small and
have a connectivity structure that fits the task, rather than reflecting the connectivity in the
brain. In neuroscience, these models were quickly abandoned, because they cannot describe
the properties of real neurons, and, more importantly, they cannot explain brain function.

1.4.2 Biological neural networks

Already in the 1950s and 1960s, neuroscientists conceived accurate models of the electrical
signal flow in and between nerve cells. Models resulting from these efforts are called biological,
natural, or spiking neural networks. The key difference to artificial neural networks is that the
biological networks consist of neuron models that replicate the behavior of real nerve cells in
great detail, instead of being optimized for solving a certain task.

Neuron models

The diversity of real neurons must also be reflected in the models of these neurons. Over the
years, many different models were published by the researchers in computational neuroscience
(for an overview, see Gerstner & Kistler, 2002; Dayan & Abbott, 2001) with the goal to create
a mathematical description that replicates certain aspects of real neurons, such as its spiking
behavior, its membrane potential, or its response to a certain stimulus.

Figure 1.9: Sketch of the abstraction levels for neuron models (taken from Dayan & Abbott,
2001): The neuron is represented by a variable number of discrete compartments, each rep-
resenting a region that is described by a single membrane potential. Starting from a real
cortical pyramidal neuron the neuron is simplified from several-compartmental models to a
point neuron (i.e. a single compartment) model.
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Different fields of computational neuroscience investigate the brain on different levels of
detail, starting from the molecular level of reaction-diffusion equations over networks consisting
of more or less detailed neuron models, up to the functional level of models describing whole
brain areas. Biological neuron models are mathematical descriptions that are based on the
observations and measurements in real neural systems. The abstraction level of a model is
chosen according to the aim of the study. For example, if signal transduction in single cells is to
be investigated, detailed models of single neurons are the best choice, while network effects can
be studied much better with neuron models that allow an investigation of the dynamics within
large populations of neurons. The range of possible abstractions for such models is sketched
in Figure 1.9. The most important categories of biological neuron models are summarized in
the following list:

Reaction-diffusion models describe the interaction of molecules inside cells or at the cell
membrane. Using this type of model gives insight into the chemical processes that
lead to the higher-level behavior of the cell that is observable in electrophysiological
experiments. Due to the complexity of this approach, it is currently not possible to
simulate whole cells or networks thereof on a computer.

Compartmental models (Rall, 1964) have a large number of electrical compartments that
describe the propagation of action potentials, and the dynamics of parameters like the
membrane potential in the dendrites and axon of a cell. Each compartment is modeled
by a set of equations from cable theory that describes the signal transduction in the
respective section. These models are often based on three-dimensional reconstructions
of real neurons. The simulation of networks of these neurons is possible, but very
demanding with respect to memory and computing power.

Point neuron models (MacGregor, 1987) only have a single compartment and are thus more
abstract than multi-compartmental models. The single compartment is described by
equations to model the membrane potential and spike generation. These neuron models
are well suited for simulations of large networks. The most prominent member of this
type of neuron models is the integrate-and-fire neuron, which integrates its inputs and
fires a spike if the membrane potential crosses a certain threshold.

Population models are even more abstract than point neuron models. They treat whole
populations of neurons with similar properties as one entity. Most commonly, these
entities are described by the mean firing rate of the neurons inside. A transfer function
is used to calculate the output rate of one population, given the input it gets from other
populations.

Field models are another type of population models that do not only describe the activity
of populations of neurons, but also take into account the spatial composition of the
populations and cell assemblies and their spatial extent.

Classical neuroscience has produced huge amounts of data as a result of in vivo and in
vitro experiments in different areas of the brain and in different species. This data allows a
precise characterization of the internal dynamics and the spiking behavior of many different
types of neurons. The measured electrical and chemical properties of these neurons provide a
basis that allows to build models that replicate the behavior of a real neuron with great detail.
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(A) (B)

Figure 1.10: Modeling single neurons: (A) Schematic of the cell membrane of a neuron. The
membrane consists of a bi-lipid layer and is impermeable for ions and larger molecules. Ion
pumps and channels are built into the membrane and allow the selective passage of certain ions
to keep the membrane potential at its resting level. (B) Equivalent circuit. The membrane
isolates the inside from the outside and thus functions as a capacitor. The channels in the
membrane can be modeled as resistor.

Figure 1.10 (A) shows a cross-section of a neuron’s membrane, and the ion channels and
pumps built into it. The semipermeable cell membrane separates the inside of the cell from
the outside, and thus functions as a capacitor. The channels allow certain ions to pass the
membrane. If the channels are lumped together, they can be modeled as a resistor. If an input
current I is injected into the cell, it may add further charge on the capacitor, or leak through
the channels in the cell membrane. Altogether, this can be seen as an electrical circuit as
shown in Figure 1.10 (B). This circuit is a classical RC circuit and describes the charging of
the membrane of the neuron without any spiking. Applying current preservation laws yields
the following differential equation, which can be solved for the membrane potential V :

CV̇ = − 1

R
V + Isyn

To complete the model, a spike threshold is applied to the membrane potential. If it is
crossed, a spike is emitted and the membrane potential is reset to its resting value. To account
for the refractoriness of real neurons, the membrane potential is clamped to this value for a
certain time after the spike. After this time, the neuron starts to integrate again. This simple
point neuron model is known as the standard integrate-and-fire neuron (cf. Tuckwell, 1988).

The parameters for the neuron model (e.g. resistance, resting potential, etc.) can be
extracted from real neurons in neurobiological experiments. Additional data from real neuro-
biological experiments can be integrated into the formal description to make the model more
realistic. For example, one can split the single resistor that corresponds to the channels into
multiple resistors, one for each type of ion channel. Another way to make the model more
realistic is to replace the linear dynamics of the integrate-and-fire neuron by non-linear dy-
namics by adding conductances for the channels. The resulting model has been described as
one of the first neuron models by Hodgkin & Huxley (1952). To build compartmental mod-
els, it is possible to combine several of the above circuits according to the three dimensional
morphology of a real neuron.
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Synapse models

Synapses do not only transmit the signals from one neuron to another, but play an important
role in the information processing themselves. Synapses are not the same all over the brain, but
differ from each other by the type of neurotransmitter they use, their strength (weight) and by
the time they need to transmit the signal (delay, usually in the order of 1 ms). The strength
of the synapse is not static, but can change due to the activity of the pre- and postsynaptic
neurons. Heavily used synapses get stronger, while less used synapses get weaker. In addition to
this functional plasticity, new synapses can grow in places where axons and dendrites are close
enough, and die if they are not used (structural plasticity ; Lendvai et al., 2000; Trachtenberg
et al., 2002).

The simplest form of synaptic plasticity is the so-called short-term depression/potentiation
(STD/STP). Here, the synapse gets weaker/stronger when many consecutive spikes are trans-
mitted through it. STP and STD both happen on the time-scale of milliseconds, seconds, and
minutes and allow the nervous system to adapt to ongoing stimulation. These changes are only
temporary and do not change the molecular structure of the synapse. Once the stimulation
ends, the synapse will return to its former state (Figure 1.11 (A); Tsodyks et al., 1998).

(A) (B)

Figure 1.11: Different forms of plasticity: (A) Experimental results from rat cortex in slice. The
average amplitude of the evoked postsynaptic potential in neuron i varies with each successive
spike of the presynaptic neuron j. Top panel: depression; bottom panel: facilitation (modified
from Markram et al., 1998). (B) Weight modification in spike-timing dependent plasticity is
a function of the relation of pre- and postsynaptic spikes (taken from Bi & Poo, 1998a).

Other forms of plasticity are happening on a much slower time-scale, and go together with
molecular and structural changes in the synapse. These slow changes are known as long-
term depression/potentiation (LTD/LTP). They are happening in the range of hours and days
and will stay for months and even years. Long term-facilitation and long-term depression are
therefore the basis of learning and memory. These mechanisms are based on new receptors
that are built into/removed from the cell membrane. One potential mechanism that underlies
these long-term changes is spike-timing dependent plasticity (STDP; see Figure 1.11 (B); Bi
& Poo, 1998a; Markram et al., 1997), which increases or decreases the weight of the synapse
depending on the temporal relation of the spikes of pre- and postsynaptic neuron.



14 CHAPTER 1. INTRODUCTION

Apart from this local type of plasticity, some global forms are involved in the regulation
of the dynamics of populations of neurons, and the activity in whole brain areas. This kind
of plasticity is mediated by neuromodulators like acetylcholine, or certain hormones that are
released into the tissue by arborizations of neurons that innervate a larger area. These mod-
ulating substances can activate or inactivate certain types of ion channels, or can modify the
effect of certain neurotransmitters. As such, they play an important role in attention control,
and enable learning and plasticity on a global scale.

In recent years, detailed models for synapses have been published. In the case of short-term
plasticity they capture the relation of neurotransmitter synthesis, release, and uptake. Models
for STDP are based on the temporal relation of the spikes of pre- and postsynaptic neurons
(Gütig et al., 2003; Morrison et al., 2006).

Network models

Although there is a huge diversity of models for neurons and synapses, it is possible to find a
common level of description for networks of spiking neurons: these networks can be described
formally as graphs of nodes and edges. Each of the nodes contains a neuron model, while the
edges can contain the different synaptic properties. As the communication in such a network is
based on spikes, the type of model does not matter for the function of the network. Depending
on the complexity of the neurons, these networks can be analyzed analytically or in computer
simulations.

Simulations of neural systems

Having a formal description of neurons, synapses, and networks allows to set up a simulation
that can be evaluated on a digital computer.

post

preDC Generator

pA

Figure 1.12: Input summation in the integrate-and-fire neuron: Left: the triangles represent
neurons ( pre connects to post; pre is stimulated by direct currents of different amplitudes).
Right: membrane potential traces of the two neurons for the stimulation with direct currents
of different amplitudes (green: -250 pA; yellow: -100 pA; blue: 250 pA; red: 500 pA). Only
the 500 pA simulation elicits a spike in pre (indicated by the reset of the membrane potential
to the resting potential). Spikes are transferred to post, where they lead to a small rise of the
membrane potential Vm. The spiking threshold is indicated by the horizontal dark gray line,
the resting potential by the horizontal light gray line.
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The result of a small simulation with only two neurons and a current generator is shown in
Figure 1.12. The first neuron (pre) is stimulated by a direct current with different amplitudes.
The second neuron (post) only gets input by the first neuron, and thus only if pre fires a spike.
If the membrane potential of the first neuron does not exceed the threshold (indicated by the
dark gray line in the figure), the second neuron does not get any input and its membrane
potential stays at the resting potential (indicated by the light gray line in the figure). Only
the stimulation with 500 pA (red trace) is able to elicit spikes in the first neuron (at the times,
when the red trace touches the dark gray line), and thus leads to an elevation of the membrane
potential in the second neuron.

1.5 Simulators for biological neural networks

Since the early days of computational neuroscience, many different simulators for biological
neural networks have been developed. Most of them are specialized for one specific level of
detail. The following list contains the most important and most popular programs in the
field (in alphabetical order) together with their main characteristics. In addition to these,
many laboratories still use “home grown” simulators that are not available to the public. A
more detailed list of simulators and their features can be found on the homepage of the user
community of the Emergent simulator at http://grey.colorado.edu/emergent/index.

php/Comparison_of_Neural_Network_Simulators and in Brette et al. (2007).

Brian (Goodman & Brette, 2008) is a simulator for spiking neural networks available on almost
all platforms. The Brian package itself and simulations using it are all written in the
Python programming language uses vectorized operations based on NumPy to achieve
the necessary performance even for larger networks. Models in Brian are defined directly
by their equations.

GENESIS (Bower & Beeman, 1997) is a general purpose simulation platform that was devel-
oped to support the simulation of neural systems ranging from sub-cellular components
and bio-chemical reactions to complex models of single neurons, simulations of large
networks, and system-level models. Simulations are set up using the built-in simulation
language interpreter.

MCell (Kerr et al., 2008) is a modeling tool for realistic simulations of cellular signaling in the
complex three-dimensional sub-cellular microenvironment in and around living cells. It
simulates stochastic reaction-diffusion systems and allows the investigation of reactions
between molecules and ions over time. MCell itself does not have a graphical user
interface, but the companion project DReAMM can be used to create and visualize
model descriptions for MCell.

MOOSE (Ray & Bhalla, 2008) is the Multiscale Object-Oriented Simulation Environment. It
is the base and numerical core for large, detailed simulations in computational neuro-
science and systems biology. Being based on GENESIS, it inherits a powerful framework
to send messages between different components of the simulation, for example from one
compartment to another or between different levels of the same model. The simulations
are set up using an extension module for the Python programming language.

http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
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NEST (Gewaltig & Diesmann, 2007) is a simulator for spiking point neuron models. It is
optimized for the simulation of large networks of relatively simple processing units that are
connected over static or plastic synapses. NEST is controlled by a simulation language
interpreter. Recent releases additionally provide a convenient Python interface to the
simulator engine. A detailed description of NEST is contained in the following section.

NEURON (Hines & Carnevale, 1997) is a simulation environment, which is used in classrooms
and laboratories around the world for building and using computational models of neurons
and networks of such neurons. It supports compartmental models as well as simple point
neurons and provides tools for conveniently building, managing, and using models in a
way that is numerically sound and computationally efficient. The setup of the neurons
and networks can either be done in a graphical user interface or by using a scripting
engine based on Python or the custom programming language HOC.

PCSIM (Pecevski et al., 2009) is a tool for distributed simulation of heterogeneous networks
composed of different model neurons and synapses. It is specialized for the simulation
of point neuron models and biologically realistic synapse models, but also supports pop-
ulation models and algorithms for learning in artificial neural networks. PCSIM has a
user interface based on the programming language Python.

SPLIT (Hammarlund & Ekeberg, 1998) is a simulator designed for efficient simulations of
large networks on several architectures. SPLIT supports the simulation of compartmental
neurons and point neuron models. However, SPLIT comes as a C++ library and the
model description also has to be written in C++. This means that changes to the model
require a recompilation of the simulation program.

STEPS (Wils & De Schutter, 2009) is a simulation platform for modeling and simulation of
coupled reaction-diffusion systems with complex three-dimensional boundary conditions.
The current version of STEPS has a Python interface for the interactive setup of model
descriptions. STEPS does not have a graphical user interface. The user can use third
party tools like Matlab, SciPy or Matplotlib for the visualization of the model.

1.5.1 The neural simulation tool NEST

NEST (Gewaltig & Diesmann, 2007) is a simulator for large networks of spiking neurons.
Its development started in 1996 as an internal research tool. Since 2004, NEST is used at
several international summer schools and advanced courses for computational neuroscience.
The NEST Initiative frequently creates public releases of the source code that are available
free of charge at its homepage at http://www.nest-initiative.org/.

NEST is written in C++ and runs on all POSIX compliant platforms. It has a built-in
simulation language interpreter that allows the interactive definition and simulation of the
network. The interpreter uses a stack-based programming language with a syntax based on
PostScript (Adobe Systems Inc., 1999). NEST runs on a large range of architectures from
ordinary desktop computers to computer clusters with thousands of processor cores (Plesser
et al., 2007). This is achieved by using a hybrid strategy with threads on single computers and
message passing across the cluster.

Most built-in neuron models in NEST are point neurons, although there is no principal
restriction to this type of neuron models. However, as models have to be written directly in

http://www.nest-initiative.org/
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C++, and because there is no tool support for the creation of new neuron models, the creation
of multi-compartmental models is tedious compared to simulators like NEURON or GENESIS,
which provide graphical user interfaces for this task, and allow to import complex geometries.

The network in NEST is represented as a weighted, directed graph of nodes and connections
between them. The nodes represent either neurons, or devices used for the stimulation and
observation of neurons. The connections can be either static, or they can change their weights
according to synaptic plasticity rules like STDP (Morrison et al., 2008).

1.6 The software crisis in neuroscience

Until the beginning of the last decade, the computational neuroscience community was split
into many different working groups, each of which specialized on a specific area of the brain
and on a specific level of detail. The different laboratories did not collaborate much with
researchers outside their own field. Little by little it became clear that this approach does not
lead to an understanding of the brain as a whole, and that projects on the system level are
required to conquer the complexity. This paradigm change lead to the foundation of many
large-scale projects that integrate the work of the different projects that were formerly separate.
The following paragraph contains a summary of the most important interdisciplinary projects
of this kind:

The Blue Brain Project (http://bluebrain.epfl.ch/) is the first comprehensive attempt
to reverse-engineer the mammalian brain, in order to understand brain function and dys-
function through detailed simulations. The project aims to simulate a cortical column
with a high degree of biological realism by using multiple methods from classical neu-
roscience, through genetics to characterize the neuron types, to computer simulations.
The main simulator used for the simulations is NEURON.

SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics; http://www.

darpa.mil/dso/thrusts/bio/biologically/synapse/index.htm) is a program by
the Defense and Science Office of the DARPA to develop electronic neuromorphic ma-
chine technology that scales to biological levels. It is a multi-disciplinary approach,
coordinating technology development in the areas of hardware design, architecture, sim-
ulation, and environment. IBM is one of the industrial partners of this project.

DAISY (http://daisy.ini.unizh.ch/) is a project that researches the daisy architecture
of the neocortex, consisting of populations of pyramidal neurons within cortical areas,
and their embedding within inter-areal connections. Their hypothesis is that the daisy
architecture is found uniformly all over the cortex and supports self-organized, context-
dependent processing. The project tries to reverse-engineer this architecture to find novel
methods for scalable, distributed, autonomous computation in information technology.

FACETS (Fast Analog Computing with Emergent Transient States; http://facets.kip.

uni-heidelberg.de/) is an attempt to create a theoretical and experimental foun-
dation for the realization of novel computing paradigms, which exploit the concepts
experimentally observed in biological nervous systems. The project is a collaboration
between different laboratories for classical and computational neuroscience, as well as
experts for the creation of analog hardware. NEST is one of the simulators in FACETS.

http://bluebrain.epfl.ch/
http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/index.htm
http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/index.htm
http://daisy.ini.unizh.ch/
http://facets.kip.uni-heidelberg.de/
http://facets.kip.uni-heidelberg.de/
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A direct consequence of the foundation of these large-scale projects in the field of compu-
tational neuroscience is the need for large-scale simulations to integrate the data from different
domains. This means that the software in the field has to be able to handle large amounts of
data (e.g. large data sets in databases, large numbers of neurons and synapses in simulations,
and large amounts of data in analysis software) in an efficient way. A more indirect conse-
quence is the need for neuroscientists to also collaborate in the software domain. The reason
for this is that the new large-scale scientific endeavors require the establishment of work-flows
consisting of many different tools and thus more complex software, which cannot be handled
by a single laboratory anymore. In addition, the large interdisciplinary collaborations between
several groups mean that more people depend on the software, and an easy way to exchange
model descriptions and data. However, at the beginning of this period, most of the tools were
incompatible with each other.

Researchers in neuroscience became increasingly aware that progress in neuroscience is
slowed down by the absence of corresponding database and simulation technology in the field.
In 2005 this lead to the foundation of the International Neuroinformatics Coordinating Facility
(INCF, http://incf.org/) by the Global Science Forum of the OECD. In this context,
neuroinformatics is understood as “computer and information science for neuroscience” and
the mission of the INCF is to coordinate the transfer of computer science competence into
neuroscience to cope with the complex multi-scale data and models created by brain research.
Research on databases had a head start, but in 2007 and 2008 several studies were published
that summarized the situation and identified the key problem areas of simulation technology
(Djurfeldt & Lansner, 2007; Cannon et al., 2007; De Schutter, 2008; Brette et al., 2007):

• A lack of independent reproduction of simulations from published articles.

• A lack of a standards for the formulation of model descriptions.

• A lack of interoperability between different simulators.

According to the studies, the current diversity of simulators has advantages for the repro-
duction and independent validation of simulations and models. However, in most cases, where
models are published, only a specification of the model, rather than the complete implemen-
tation is presented. Such specifications are frequently incomplete and a reproduction is often
only possible with the direct help of the original authors. Even if the complete simulation
code is published, it can still be tedious and error-prone to extract the model. Due to the
variety in model description languages used by the different simulators, and due to the lack of
interoperability between simulators, it is thus still a major problem to reproduce simulations
from published papers. A realistic approach to ease these problems was proposed by Cannon
et al. (2007), who suggested to facilitate interoperability in two ways: standardized model
descriptions and run-time interoperability between simulators.

Standardized model descriptions based on the extensible markup language (XML; Bray
et al., 2000) have a long tradition in systems biology (e.g. SBML; Hucka et al., 2002). However,
a comparable standardization process in computational neuroscience has only just started.

Run-time interoperability between different simulators for the same problem domain can
be implemented in different ways. The simplest is by using named pipes to transmit data and
commands from one simulator to another. A more elegant way is to build on a library that
couples the different applications and takes care of the low-level details of the communication.

http://incf.org/


19

Another problem of the field was the lack of a culture of sharing and re-use with respect to
software and technology. Large communities, especially in neural network modeling, still use
“homegrown” software that is not available electronically. This problem was further aggravated
by the fact that it was hard or impossible to publish articles about the algorithms and data
structures used in neuroscientific software in the classical neuroscience journals.

However, when this problem was realized, new journals for the field of neuroinformatics
were founded. Springer’s Neuroinformatics and the open-access journal Frontiers in Neu-
roinformatics are only two examples. In addition to the new journals, new conferences and
developer meetings emerged, the most notable being the INCF Congress on Neuroinformatics
and the CodeJam workshop series organized by the members of the FACETS project.

1.6.1 Implications of the software crisis for NEST

The large-scale projects and the resulting problems outlined in the previous section have direct
consequences for the simulation tool NEST. To be a valuable tool for system-level projects
like FACETS, NEST needs to be able to run neural network simulations that involve millions
of neurons and billions of synapses efficiently. This includes the efficient simulation of neuron
models and the efficient exchange of data between the neurons, as well as the efficient setup
and control of the network. For the last point it is crucial to provide a convenient user interface
that lowers the barrier for new users.

To improve the readability of model descriptions, it is important for NEST to support
standard description languages that allow an easy exchange of models between researchers.
This can be achieved in two ways: first, by supporting standard model descriptions, such as
NeuroML (Crook & Howell, 2007; Crook et al., 2007), that allow a simulator-independent
model specification, and second, by providing access to the simulator in a way that is more
accessible to the user and thus easier to learn. As the standardization process for NeuroML is
not finished, we decided not to invest our resources into developing support for it yet.

In general, interoperability between simulators can also be achieved in two ways: first,
by supporting offline interoperability on the basis of common description languages that are
supported by many simulators, and second, by support for run-time interoperability to couple
NEST to other simulators and tools for stimulus generation and data analysis. The computa-
tional neuroscience community is currently working heavily to develop solutions and strategies
in all these areas. The following section introduces our solutions to the problems to ensure
NEST’s aptitude for the neuroscientific challenges of the future.

1.7 Contributions of this thesis

At the beginning of the project for this thesis, NEST suffered from several drawbacks:

• The algorithms and data structures for multi-threaded and distributed simulation pre-
sented in Eppler (2006) were not optimal. Especially the event delivery mechanism and
the algorithms for connection setup and management were only prototype implementa-
tions that were not ready for production use. However, to support large-scale simulations
(as needed in the FACETS project for example) these new features are required.
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• NEST’s user interface (the simulation language interpreter SLI) is hard to learn and use
by novices, because of its syntax. In addition, model descriptions written in SLI are hard
to read. This is a problem in an environment were many researchers depend on readable
model descriptions that allow an easy re-use of components.

• Coupling NEST to other software for stimulus generation and data analysis was only
possible by using hand-crafted tools, which are complicated to use, because the user is
responsible for the synchronization of the different processes. In the context of multi-
scale simulations, this hinders progress and complicates the collaboration with other
researchers.

These problems are united by the fact that all of them are are communication problems:
the algorithms and data structures for event delivery and the storage of connections in the
simulation engine comprise the central communication infrastructure of NEST. The user inter-
face of NEST is the main communication architecture for the communication between the user
and the simulation engine, and can be used by higher software layers to control NEST. These
interfaces have to provide access to the elements of the simulation engine in a convenient way
even in multi-threaded and distributed scenarios. The exchange of data with other applications
at run-time can be implemented on top of a general communication library for neuroscientific
software.

During the projects that were the basis for this thesis, we analyzed the different commu-
nication problems in NEST and developed solutions for them or extended the already existing
solutions:

• We improved the event delivery algorithm and corresponding data structures that sup-
port event delivery between nodes that are distributed over multiple computers in a
cluster. The scheduling algorithms and data structures were optimized to support both,
the old thread based simulation of NEST 1 and a new distributed simulation scheme.
Furthermore, we designed solutions for problems that were found in earlier versions of
the NEST simulation engine connected to accessing node and synapse parameters in a
multi-threaded setup.

• We designed a convenient new user interface for NEST (PyNEST) that allows the formu-
lation of model descriptions in the programming language Python, which communicates
with the simulation kernel through NEST’s old simulation language interpreter SLI. This
also provides a natural way of running legacy code that has been written throughout the
last ten years.

• We co-developed a simulator independent description language for neural simulations
(PyNN) that uses the PyNEST API, and provides a common programming interface
for many different simulators and the neuromorphic hardware developed in the FACETS
project.

• We designed an interface for the communication between different applications at run-
time. It is based on the MUSIC library (Ekeberg & Djurfeldt, 2008), which was developed
by the International Neuroinformatics Coordinating Facility (INCF). This interface allows
to build multi-scale simulations, and to couple NEST to other simulators and tools for
stimulus generation, visualization, and data analysis.
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1.7.1 Communication inside the simulator

For many neuroscientific studies, the run-time of simulations directly translates into the number
of experiments that can be performed on a model in a given time. Especially studies that involve
plasticity and structural changes in the network often require the simulation of long periods
of biological time (in the range of hours and days) to see the effects on the weights of the
connections and on the structure of the network. On the other hand, the recent trend towards
large-scale simulations of cortical structures requires larger networks than would fit into the
memory available on a single computer.

Both requirements can be solved by recruiting more than one processor per machine or by
using more than one machine. There are two basic possibilities to do so: threads or processes.

Threads allow the parallel execution of program code in one process. Most modern operating
systems provide threads as a built-in feature. This means that the user does not have to
set up special libraries or auxiliary programs in order to use multiple processors. Using
threads, the different parts of the program can work on the same data without the
need for special communication facilities. In principle, the same data structures can be
used for single- and multi-threaded execution of the program. However, using threads,
a program is constrained to a single machine and thus it is not possible to simulate
networks exceeding the memory available on a single machine.

Processes only have access to their own memory. If multiple processes are used to solve a
common problem, it is necessary to split and distribute the data structures of the problem
and exchange the data between the processes using a special message passing library.
As the processes of a message passing application can run on multiple machines, the
possible network size is not restricted by the memory of a single machine, but by the
sum of memory available on all participating machines.

To take advantage of both threads and processes, it is possible to use a hybrid scheme with
processes on cluster nodes and threads locally. This results in the greatest possible flexibility for
the user. Using threads is an easy way to support the many-core processors that are becoming
more and more widespread even in laptops and ordinary desktop computers without extra work
for the user. Large networks require the use of large computer clusters or facilities for high
performance computing (HPC ), where the message passing libraries are installed anyway.

Especially for large numbers of processors, scaling is more important than absolute perfor-
mance. NEST 1 only supported thread-based simulations. The data structures were designed
to allow concurrent access by multiple threads. However, production use revealed several
problems with the performance of these data structures. During this work we analyzed the
data structures and algorithms and developed a new network representation that exhibits much
better scaling. The difference between the scaling behavior of NEST 1 and NEST 2 can be
seen in Figure 1.13, which shows the run-time and speed-up for a simulation of a large ran-
dom network model (Brunel, 2000). The results of this work are summarized in Plesser et al.
(2007).

The work presented in Eppler (2006) was centered around performance improvements
and combined thread-based and distributed simulation techniques. As such it constituted an
important milestone in the development of NEST.

However, many of the improvements in the simulation engine were not easily accessible
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Figure 1.13: Scalability of NEST 1 and NEST 2 with respect to number of processors: The
simulated network contained 104 neurons, with 1000 random connections each; the exact
model is described in Brunel (2000). Green line: NEST 1; red line: NEST 2; the gray line
indicates linear speed-up. (A) Simulation time against number of processors, log-log repre-
sentation. (B) Corresponding speed-up SP with P processors against number of processors,
log-log representation (SP = T1

TP
; T1 is the serial run-time, TP the parallel run-time with P

processors).

for the user in a multi-threaded scenario. This was especially true for the access to nodes
and connections in the network, due to the multi-threaded data structures of the network
representation. During this work, we solved the remaining problems with these algorithms and
data structures and improves the functionality and usability of NEST.

1.7.2 Communication between user and simulator

For the user, the most visible part of the software is the user interface. Because of the large
number of elements in a typical neural network simulation in NEST, it is not sensible to use
a graphical user interface, but instead we rely on a programmable scripting interface. NEST
comes with a built-in simulation language interpreter (SLI), which has a syntax based on
the PostScript programming language (Adobe Systems Inc., 1999). However, SLI was often
criticized as hard to learn, because it uses reverse polish notation for all expressions. This
means that functions expect their arguments on the operand stack and return their results to
the stack, which is easy to parse for a computer, but makes the program code more complicated
and especially math is hard to read. This made us think about a new user interface for NEST.

On the other side, SLI is used in many neuroscientific laboratories since over ten years.
This means that a lot of code in SLI already exists and many published articles are based
on simulations that were carried out with NEST and SLI. In addition, SLI is well tested and
supports a multi-paradigm programming scheme that combines functional, object oriented,
and procedural aspects in one language. A new user interface thus would have to be easier to



23

use than SLI and at the same time allow to run legacy SLI code.

A recent trend in computational neuroscience is to replace traditional tools like Matlab
(MathWorks, 2002) and Mathematica (Wolfram, 2003) with Python. This happens for a
number of reasons: Python is free software and is developed by a large and active community
inside and outside science (Dubois, 2007). It provides a large number of extension modules
for database access, graphical user interfaces, network services, scientific computing, etc., and
can be used well as a glue language between different software components. However, Python
is not available on some high-performance clusters that we still need to use, so a Python-only
user interface is not an option.

Considering all this, we implemented a new user interface for NEST as an extension module
for the Python programming language (PyNEST; Eppler et al., 2009). However, instead of
using the traditional approach of creating direct bindings to the classes and functions of NEST,
PyNEST provides a set of routines for data conversion from SLI to Python and back, and
communicates with SLI to execute commands inside the NEST engine. PyNEST allows to
specify stimulus generation, simulation, and data analysis in a single Python script, while still
allowing the execution of legacy SLI code in a natural way.

A common interface for different simulators

Many other simulators are now also using Python as their primary user interface language or in
addition to their old user interface (Kötter et al., 2009). This makes it easier to share model
descriptions and code with others, and eases the task of porting models from one simulator to
another. However, as most of the other simulators use different concepts for the definition of
stimuli and models, this task can still be tedious.

The groups collaborating in the FACETS project are using many different simulators (cur-
rently NEURON, PCSIM, Brian and NEST). This diversity gave birth to the idea of a common
user interface to all of them, based on their Python interfaces. To this end, we contributed to
the design and development of PyNN (Davison et al., 2008), a tool which provides a simulator
independent programming interface for multiple simulators by using adapter backends that
take care of the setup and control of simulations, the translation of model names and physical
units and the conversion of data files to a common format.

1.7.3 Communication between different simulators

As outlined above, models are created on different scales and by using different tools and
simulators. One way of interoperability between different simulators is on the language level,
PyNN is an example of this. However, PyNN does not allow the interaction of simulators at
run-time, but only allows to control them with a common interface.

To get a broader view on the processes in the brain, it becomes more and more important
to couple different tools and simulators in an on-line fashion: networks of point neurons can
provide realistic input to models of single nerve cells, while functional models can provide input
to networks of point neurons. Combining the models on different scales is complex, as the
classical simulators only focus on a single level of detail and physical concepts such as time
and units, or neuroscientific concepts such as neurons and synapses are represented differently
in the different simulators.
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Additionally, tools for stimulus generation and data visualization and analysis are currently
tightly coupled to the simulators they are developed for, and depend on the exact data formats
of the application that generated the data. It is desirable to have the ability of re-using these
applications for other simulators to minimize the amount of duplicated work.

One approach to solving these problems is the Multi-Simulator Coordinator MUSIC (Eke-
berg & Djurfeldt, 2008), which was developed by the International Neuroinformatics Coor-
dinating Facility (INCF). It is a standard and an accompanying library that can be used by
different simulators and tools to exchange data (spikes, continuous values and text messages)
during run-time. MUSIC already comes with a set of tools for stimulus generation and record-
ing of data, and simple data visualization programs. By providing an interface to MUSIC, it
is possible to communicate with all other applications that have such an interface, without
taking care of the low-level issues like synchronization and data transfer. During the work for
this thesis, NEST was one of the first simulators that has been extended by an interface to
the MUSIC library.

1.8 Character of this thesis

The solutions described in this thesis are a direct answer to research needs in computational
neuroscience. As such, many of the presented solutions do not constitute new methods in
computer science, but are a transfer and adaptation of computer science knowledge to the
domain of neuroscience and neuroinformatics and important for the progress in these fields.
This includes the analysis and refactoring of existing solutions to bring them to the level of
state-of-the-art solutions in computer science.

In some cases new neuroscientific research directions also required new functionality. The
work for this thesis was carried out in the public release of NEST (available from http:

//www.nest-initiative.org/), which imposed two important preconditions:

1. It was not possible to design the solutions from scratch, but rather the existing compo-
nents had to be taken into account. Thus the changes had to be compatible with the
algorithms and data structures already present.

2. The system had to stay usable throughout the development period of the new compo-
nents and algorithms (Diesmann & Gewaltig, 2002).

The advantage of this approach was that the quality of the developed solutions was con-
stantly evaluated and tested with real-world simulations and thus errors in the design or in the
implementation could be found and fixed rapidly.

One implication of the rapid development in the field of computational neuroscience was
the need to publish the new algorithms and methods as soon as they were tested internally and
found working. The first way of publication was to create new beta releases of the software
roughly once per month to give the users the possibility to use the new features for their
research. The second way of publication was to write articles for high-ranked, peer-reviewed
computer science and neuroinformatics journals and present the work at conferences for com-
putational neuroscience and neuroinformatics to claim the authorship of the new methods.
Each of the chapters in this thesis is accompanied by a journal publication in Appendix A,
which is a distilled version of the work.

http://www.nest-initiative.org/
http://www.nest-initiative.org/
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1.9 Structure of this thesis

In Chapter 2, we show how to represent biological neural networks for efficient simulation in
multi-threaded scenarios, where multiple processors have to work on the same set of data, and
in distributed scenarios, where the network has to be distributed onto many computers. We
also describe the scheduling algorithm that allows an efficient delivery of events even with a
large number of receivers. In addition we describe many improvements for problems with the
multi-threaded use in earlier versions.

Chapter 3 describes PyNEST, the Python bindings for the NEST simulation kernel. PyNEST
provides a shallow wrapper for NEST’s simulation language interpreter SLI. Its API is modeled
closely after the API of NEST itself.

To allow high-level descriptions of neural networks, we participated in the development of
PyNN, which provides a common high-level API for multiple simulators. The basic design of
PyNN is described in Chapter 4.

We designed and implemented an interface to the MUSIC library, which allows different appli-
cations (simulators, analysis tools, visualization programs, etc.) to exchange data at run-time.
This interface is described in Chapter 5.

Chapter 6 contains a discussion of the work presented in this thesis and gives an outlook into
the next steps of the development of NEST.

The publications that resulted from the work described in this thesis are contained in Ap-
pendix A for the convenience of the reader.
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Chapter 2

Communication inside the simulator

The basic building blocks of information processing in the brain are nerve cells (neurons), which
communicate by exchanging point events (action potentials, spikes) over their connections
(synapses). Models of the nervous system are a valuable method to understand the working
principles of these building blocks and to gain insight into the function of the neural networks
in the brain. Simulations can be used to answer questions that cannot be addressed analytically
and are not tractable in classical neurobiological experiments.

To understand the principles of information processing in the brain, we depend on network
models with more than 105 neurons and 109 connections. These numbers follow from two
statistical numbers that can be measured in the cortical tissue of vertebrates (Abeles, 1991):

• Each neuron receives approximately 104 connections from neurons nearby.

• Each neuron is connected to about 10 % of the neighboring neurons.

If we want to simulate networks which fulfill both of these criterions, we end up with
at least 105 neurons and 109 connections, which corresponds approximately to the number of
neurons and synapses found in one cubic millimeter of cortical tissue in a vertebrate (Figure 1.1;
Braitenberg & Schüz, 1998). In general, it is desirable to use networks with this minimal size, as
scaled down connectivity often leads to artifacts in the dynamics of the network and problems
with its stability. From the computer science perspective, the key challenges for simulations of
such networks are:

• The design of data structures that represent the neurons and connections succinctly.

• The mapping of inter-neuron communication onto efficient algorithms to transmit events.

• The update of neuron states with minimal effort.

• The convenient setup and manipulation of the network and its building blocks.

NEST (Plesser et al., 2007) is a simulator for networks of spiking neurons, which addresses
all these requirements. To simulate very large networks in acceptable time and with acceptable
memory requirements per machine, NEST uses a hybrid parallelization strategy, using multiple
processes and message passing across the cluster and thread-based simulation on each compute
node of the cluster.



28 CHAPTER 2. COMMUNICATION INSIDE THE SIMULATOR

Most large-scale scientific applications that use parallel computing just rely on either
threads or message passing, because of the additional effort required to develop and main-
tain the data structures and algorithms for a hybrid scheme. The reason why we still use a
hybrid strategy instead is twofold:

1. Threads allow parallel computing on multi-processor machines without the need for
additional libraries. This is important to exploit multi-core processors out of the box,
as these are becoming more and more widespread even in normal desktop computers
and laptops. However, achieving good performance with thread-based parallelization
is difficult, as the programmer has to take care of many low-level details, like cache
efficiency and data locking in order to prevent concurrent accesses to the data. This is
the reason why multi-threaded programming is often only used for applications where
performance is not critical, like the decoupling of program logic and user interface.

2. Very large networks, however, do not fit into the memory of a single computer, which
makes it necessary to distribute the network over a cluster of computers. On the down-
side, this means that the network representation has to be split and distributed onto
different processes, running on different machines, and that the spikes of the neurons
have to be communicated across a computer network.

The algorithms and data structures of NEST support parallel and distributed simulation
of large-scale spiking neural networks with heterogeneous neuron and synapse types. We
show that a single representation for the neural network can be designed, which is optimal
for both, parallel simulation using threads, and distributed simulation using multiple processes
and message passing for the transmission of events.

The communication architectures in NEST were optimized to minimize cache problems
during simulation and to allow an efficient broadcast of the state of the neurons to other
machines that participate in the simulation.

The user interface of NEST was adapted to the new simulation scheme and we designed
solutions to inspect and modify the network elements in a unified way, although the elements
may be distributed over different threads and machines.

2.1 The history of NEST

NEST has a long history of use in computational neuroscience. The roots of its first prede-
cessors date back as early as 1994. Different branches of development were used to explore
new solutions for novel problems faced in the neuroscience domain. This section contains the
most important branches of the development that lead to the current version 2 of the NEST
simulation system.

2.1.1 SYNOD

The first simulator developed by the NEST Initiative was SYNOD (Diesmann et al., 1995).
It was implemented as a C++ library carrying out the simulation, and a simulation language
interpreter (SLI) for the convenient setup of the network, and for the control of the library.
The library supported different neuron models that could be used in the same network. Static
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connections (i.e. synapses with static weight and delay) were used to connect the neurons, and
simulated devices could be used to stimulate the network and to measure certain quantities
(like membrane potential or spike output) from the neurons. Communication in the simulation
kernel was not mediated by events, but rather by directly calling the respective function of the
target neuron. This restricted the communication between the neurons to using spikes.

2.1.2 NEST 1

Based on the experience during the development of SYNOD, a new simulation engine called
NEST 1 was developed. The name NEST is an abbreviation for NEural Simulation Tool. The
simulation engine was completely re-written, while the simulation language interpreter was
kept and extended to support the new features of the simulation engine library. The main
improvements over SYNOD were:

Common base class for neurons and devices. In SYNOD, neurons and devices were sepa-
rate entities. This meant that different sets of access functions were needed and that
separate scheduling algorithms had to be used to update the elements. To remedy this
situation, both element types in NEST are derived from the same base class (Node) and
live together in a single network tree.

Support for structured networks. SYNOD only supported “flat” networks without struc-
ture. In NEST, networks could be organized hierarchically in sub-networks to reflect the
structure in natural neural networks. Moreover, this allowed to structure networks into
logical blocks to ease the work-flow of the researcher.

Communication via events. Neurons in SYNOD communicated by directly calling each other’s
functions. NEST introduced the concept of events, which allowed a more flexible com-
munication using currents, rates and spikes. Using a central event delivery algorithm
allowed to simplify the neuron model classes.

Support for multi-threaded simulations. This made it possible to use multiple processors in
one machine. However, the data structures for the storage of nodes and connections were
not optimized for thread-based simulations, which lead to a dissatisfying performance,
if more than two threads were used.

Generic parameter interface for nodes. The use of dictionaries (named parameters; Finkel,
1996) together with the functions GetStatus and SetStatus allowed a minimal inter-
face for the modification and inspection of node parameters and solved the problem of
fat interfaces (Stroustrup, 1997): SetStatus gets a dictionary and a node id as argu-
ment and sets the parameters of the given node accordingly, while GetStatus gets a
node id and returns a dictionary with the current parameters of the corresponding node.

2.1.3 Paranel

One of the first formal descriptions for the distributed simulation of neural networks in literature
was published by Morrison et al. (2005). The simulator was called Paranel and is based on
SYNOD. To support the simulation of large networks with heterogeneous synapse types on
computer clusters, the authors made three major changes to the original design of SYNOD:
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• Addition of message passing facilities on the basis of the message passing interface (MPI ;
Message Passing Interface Forum, 1994) and a network representation that distributes
neurons and synapses onto multiple processes.

• Removal of the simulation language interpreter to reduce the overall complexity of the
software and to simplify the network setup in a distributed scenario.

• Addition of support for plasticity and heterogeneous synapse types.

Paranel was very efficient and showed excellent scaling. Two improvements that are directly
related to the distribution of the network were responsible for its good performance:

Communication in steps of the minimal connection delay. Each connection in the net-
work has a delay δ. During the time ∆, given by the minimal delay in the network, no
signals from other neurons can influence the state of receiving neurons, which means
the network elements are actually decoupled during this time. The network is simulated
on a fixed time grid with step size h. The decoupling now allows to send spike infor-
mation to neurons on other processes in steps of ∆ instead of h. This minimizes the
communication overhead and thus increases performance.

Postsynaptic storage of synapse. Instead of storing the connection information of the neu-
rons with the presynaptic neuron, it is stored on the process where the postsynaptic
neuron is located. By only sending the ids of the neurons that fired a spike and re-
creating the full event on the receiving process, it is possible to minimize the data sent
to each process, although this requires to broadcast all spikes to all processes.
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Figure 2.1: Scalability of NEST 1 and Paranel with respect to number of processors (taken from
Eppler, 2006, Figure 1.2): The simulated network contained 104 neurons, with 1000 random
connections each; the exact model is described in Brunel (2000). Solid line: NEST 1; dashed
line: Paranel; the gray line indicates linear speed-up. (A) Simulation time against number of
processors, log-log representation. (B) Corresponding speed-up SP with P processors against
number of processors, log-log representation (SP = T1

TP
; T1 is the serial run-time, TP the

parallel run-time with P processors).
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Although NEST 1 and Paranel are both based on SYNOD, they show quite different scaling.
The main reason is the different memory layout of the two simulators: Paranel uses multiple
processes, each of which is assigned to one processor. NEST uses multiple processors within
a single process, which can lead to performance problems (see Section 2.2).

Using multiple processors on a single machine only makes sense for applications that have
good scaling. The comparison in Figure 2.1 clearly shows that the scaling of NEST 1 was
insufficient and that Paranel was superior in this respect. However, the simulation language
interpreter made the usage of NEST 1 more convenient than the use of Paranel, where changes
in the network required a re-compilation of the whole simulation program. These insights lead
to the exploration of more efficient update schemes for NEST.

2.1.4 Express

To improve the performance of the simulation engine of NEST 1, the update algorithm from the
Paranel engine was adapted to the thread-based simulation scheme in 2005: in a development
branch of NEST 1, called Express, we developed a first proof-of-concept implementation of
the idea that not only communication between nodes, but also the update of nodes could be
carried out in steps of the minimal connection delay ∆ instead of the simulation time step
h (Plesser, 2005). This means that more operations can be performed on the same data,
which is already in the processor’s cache memory, and that the cache has to be reloaded less
often from the slow main memory (cf. Section 2.2). As a consequence this results in improved
performance and better scaling.

2.1.5 NEST 1.9

The work presented in Eppler (2006) constituted a first prototype implementation for the
release of NEST 2. It combined the features of multiple of the previous versions in a single
simulation system. This included the algorithms for distributed simulations from Paranel, the
improved update algorithm for multi-threaded simulations from the Express simulation engine,
and the simulation language interpreter and the other features from NEST 1. The main
features of the resulting NEST 1.9 simulation engine were:

Support for multi-threaded and distributed simulation allows to simulate very large net-
works on clusters of multi-processor machines with acceptable memory requirements on
each machine. The underlying network representation is optimized for both simulation
schemes with comparable performance and scaling.

Support for heterogeneous synapse types allows to implement plastic synapse types, and
to use different synapse types in the same network.

Node update in steps of the minimal connection delay reduces cache reloads and thus
improves performance and scaling.

Although NEST 1.9 was running stable, it could not be immediately used in the neurosci-
entific day-to-day work. First applications to real-world scientific tasks by several researchers
revealed some severe shortcomings of the implemented algorithms and data structures with
respect to their performance and functionality:
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1. To carry out multiple simulations in a single session, the simulation engine provides
a function to delete the network and reset all simulator parameters to their defaults.
NEST 1.9 also allowed to customize existing synapse and neuron models, and to create
new models by copying existing ones. However, the design was not able to recover the
original model parameters upon a reset of the simulator. The solution to this problem
is described in Section 2.4.1.

2. While porting the old models from NEST 1 to the new API for models of the NEST 2
simulation engine, we found that the round-robin distribution of nodes onto the different
processes is not compatible with compound models, where a parent node needs direct
access to the data structures and functions of its child nodes. See Section 2.4.2 for a
solution to this problem.

3. The original design of the system for heterogeneous synapse types had a global preset for
the synapse type to use for new connections and for the retrieval of synapse parameters
of existing connections. This synapse context was only implicit and lead to many errors
in user code that were hard to find and hard to debug. In NEST 2, the synapse type is
an explicit parameter that has to be given to all functions that require a synapse type
to carry out their task.

4. There was no mechanism to prevent non-spiking devices to send their events over dy-
namic synapses. This lead to wrong simulation results, if e.g. a current generator was
connected to a neuron via a STDP synapse, which interpreted the events as spikes and
changed the weight of the connection accordingly. The new algorithm for checking the
compatibility of connections and events is explained in Section 2.4.3.

5. Without knowledge of the internal network representation, it was impossible to query
the current state or modify the properties of synapses once they were established. The
reason for this was the distributed storage of connections and the lack of proper access
functions for them. Section 2.4.4 explains the design of such access functions.

6. In multi-threaded simulations, it was impossible to retrieve the data, which was collected
by devices, without explicitly looping over the threads. This lead to errors, as a single
call to GetStatus in a multi-threaded setup only revealed a subset of the collected data.
Section 2.6 describes the solution to this problem.

7. When our users went to larger clusters or high performance computing (HPC facilities as
e.g. the BlueGene, we found that the use of the CPEX algorithm (Tam & Wang, 2000)
for the broadcast of spike information to all processes only provided insufficient scaling.
For NEST 2, we replaced this with MPI’s Allgather() function. The design of a new
log-level communication system is explained in Section 2.5.1.

2.2 Cache efficient software design

Previous versions of NEST suffered from performance and scaling problems. One of the major
performance bottlenecks in multi-threaded applications is a cache-inefficient memory layout
of data structures that leads to cache-inefficient algorithms. If the working principles of the
cache are known, several measures can be taken to avoid these problems.
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Modern processors can process data much faster than the main memory can deliver it.
To solve this problem, the processor contains a small working memory called cache, where it
stores the data it currently needs. The main memory usually has a size in the range of a few
Gigabytes and access times around 10 ns. The cache, however, runs at the full clock speed
of the processor, but has a much lower capacity of up to only a few Megabytes (Tanenbaum,
1999). This means that data is frequently forced out of the cache and replaced with new data
form main memory.

When the processor needs data, it first looks into its cache. If the data it needs can be
found there, it can retrieve that data into its registers with little or no delay and work with it.
If the data is not in the cache, it is fetched from main memory. Due to the high latency of
this operation, the overall performance of the program decreases, because the processor has
to wait for the data. In order to minimize the number of cache reloads from main memory,
the processor does not only fetch the data it currently needs, but also the data stored in the
direct vicinity of the data needed (pre-fetching).

To improve the speed of a program, this can be exploited by the design of data structures
that store related data together and thus increase the chance of a successful cache look up.
This strategy works well, if only a single processor needs to work on the data. The matter
becomes more complicated in multi-threaded scenarios, where many processors work on the
same data and have a copy of the same memory location in their cache. The reason why this
is more complicated is that the data needs to be kept consistent with respect to the other
processor’s caches, by writing the data back to main memory and reload all caches from there.

The solution for this is to split the data structures according to the different processors
that have to operate on it. Using multiple processes (as Paranel did), this work is done by
the operating system, which assigns a private memory block to each process. Communication
between the different processors is carried out by passing messages with the relevant data.
In multi-threaded programs, however, communication happens by direct access to the data
structures and the programmer has to take care that the data structures fulfill the separation
requirement.

2.3 Network representation

To avoid the cache problems explained in the previous section and to improve the flexibility
for the use of heterogeneous synapse types, we designed a network representation that stores
connections separate from nodes and separates the memory of the different threads.

The networks of point neurons (see Section 1.4.2) that can be simulated in NEST can be
described as graphs of threshold elements that exchange spikes over their connections. In this
representation, neurons correspond to the nodes of the graph, while connections correspond
to the edges. The connections between the elements are characterized mainly by their weight
and a delay, and can (in the case of plastic synapses) contain a function that updates the
weight based on the spiking behavior of the pre- and postsynaptic nodes.

The network graph can be transformed into an adjacency list, where each node stores the
list of nodes it connects to (Gross & Yellen, 1999). However, to allow efficient multi-threaded
and distributed simulations, this representation has to be split into chunks of approximately
the same size, which can be simulated using POSIX threads (Lewis & Berg, 1997) and MPI
processes (Message Passing Interface Forum, 1994).
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Events

Different types of events are used for the different types of data that can be sent between the
nodes in NEST. The Event base class contains pointers to the sending and receiving node, the
weight, and the delay of the connection. This base class is extended by additional members
depending on the concrete type of the event. The simplest type, called SpikeEvent, contains
only the basic data fields as it does not carry any data other than the time stamp, while the
CurrentEvent contains an additional field for the amplitude of the current. Several other event
types exist for other types of data. Request events are answered by sending the requested data
back to the sending node.

2.3.1 Nodes

All nodes in NEST are derived from the common base class Node, which provides virtual func-
tions to initialize and update the node as well as to handle incoming events during simulation.
Each model class has to provide an implementation of these functions. When a node is created,
it is assigned a global identifier (global id, gid), which corresponds to the order of its creation.
During the update of a node, it can send and receive events. The interface of the nodes is
made in such a way that the developers of neuron and synapse models do not have to take
care of the distribution of nodes.

Node types

Three basic types of nodes exist in NEST: neurons, devices, and sub-networks. Neurons
represent neuron models and are implemented as C++ classes with corresponding update
functions. This is the case for point neuron models as well as for compartmental neuron models
and means that neurons in NEST cannot be split and distributed over multiple processes.
Devices are nodes that are used to stimulate the network, or to measure certain quantities
from nodes. The latter can be simple recorders, such as voltmeter, or carry out data analysis
on the fly, such as correlation detector, which calculates the correlation between neurons. Sub-
networks can be used to create structured networks, but do not necessarily correspond to a
functional partitioning of the networks. When NEST is started, a single empty sub-network
exists (root node) and serves as container for the complete network. The root node has the
global id 0.

2.3.2 Storage of nodes

The neuron models that exist in NEST are very diverse with respect to memory requirements
and the computational load they cause. To split the network in smaller chunks of approximately
the same size that can be distributed onto the threads and processes, each node is assigned
to one of NVP virtual processes using a simple round-robin algorithm (Morrison et al., 2005):
the virtual process id idVP of a node n is given by

idVP(n) = idN(n) mod NVP

where idN(n) is the global id of the node. A virtual process is a POSIX thread that lives
in one of NMPI MPI processes. Each of the processes contains the same number of threads.
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After the creation of nodes, the number of threads cannot be changed anymore.
Device nodes are created for each virtual process to allow parallel data i/o and distribute

the load. This is particularly important for device nodes that have to deliver large amounts
of data to their targets, or devices that are CPU intensive, such as random spike sources, or
devices that have to record a lot of data to disk. To balance the load of all virtual processes,
neurons are only created on the virtual process they are assigned to. On all other virtual
processes, they have light-weight proxies that only store administrative information, but do
not carry out any computations.
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Figure 2.2: Data structure for the storage of nodes: (A) The network as directed graph. The
numbers correspond to the global id of the node. Grey nodes are devices; white nodes are
neurons. (B) The network representation using a single process with two threads. The column
labeled gid contains the global id of the nodes, the column labeled tid contains the thread the
neuron is assigned to. (C) The network representation distributed onto two processes. The
column labeled gid contains the global id of the nodes.

The virtual processes can be distributed arbitrarily among threads and processes: a simu-
lation with two processes and two threads each will yield the same results as a simulation with
a single process having four threads, or a simulation with four processes with one thread each.
In order to save memory with more than one thread, the network representations inside each
process are merged, so that a single node list can be used. Each entry of the node list then
contains an array with one entry for each thread. This means that the nodes for the different
threads are stored in separate locations of the memory in order to reduce cache problems.

Figure 2.2 shows the network representation that was explained above applied to a net-
work consisting of two devices and three neurons for a single process with two threads, and
distributed onto two processes with a single thread each.

2.3.3 Connections

Synapses in NEST are objects that store the weight and the delay of the synapse, and optionally
(depending on the type of connection) contain a method to update the weight according to a
plasticity rule. All synapses are derived from the base class Connection.

During update, nodes can send events, which are delivered to their targets by the Network

class. When created, these events only carry the time stamp of creation, and the data they
shall transmit. During delivery, they are handed to the respective Connection object, which
fills in the missing weight and delay and hands the event to the handle() function of the
target node. This flow of events is depicted in Figure 2.3.
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Figure 2.3: Flow of events from source to target node: An event is created by a source
node, but does not yet contain weight ( w) and delay ( d). This information is filled in by the
Connection object after communication (message passing). The complete event is passed to
the target node.

2.3.4 Storage of connections

In simulations with only a single process, all connection information is available locally. With
multiple processes, we have to decide if we want to store this information on the process of
the presynaptic node or on the process of the postsynaptic node.
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Figure 2.4: Different possibilities for the storage of connections: (A) The näıve design, where
connection data is stored on the process of the presynaptic node. Complete event data (con-
taining the weight and delay of the connection, and the time stamp of event creation) have to
be sent to all target nodes. Solid arrows depict inter-process communication. (B) Storage of
connection information on the process of the postsynaptic node using a local event queue on
each process. Each neuron sends its events to the local event queue, which is broadcasted to
all participating machines. Only the id of the sending node has to be transmitted together with
the time stamp of event creation. The event can be reconstructed on the receiving process.
Solid arrows depict inter-process communication; dotted lines depict local event delivery.

Figure 2.4 illustrates the consequences for the amount of transferred data for the two basic
possibilities to store connection information. Storing the connection information on the process
of the presynaptic node, the amount of transferred data scales with the number of targets,
whilst it scales with the number of processes, when storing the connection information on the
process of the postsynaptic node.
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Presynaptic storage

If we used presynaptic storage of connection information, each node has to know its full target
list and has to deliver events to all targets. For n nodes, each having a mean of k connections
and a mean firing rate of λ, we need to send λ ·n · k events per process. For k approaching n,
which is the case for biological networks below 104 nodes and realistic connectivity, this results
in O(n2) events to be sent.

Postsynaptic storage

If we used postsynaptic storage of connection information, each node sends event information
to all processes. The events are stored in an event queue on the receiving process, and can
then be recreated, as full connection information is available there. For m processes this results
in λ · n ·m events. Assuming that m is usually much smaller than k, we only need to send
O(n) events per process.

Distributed connection storage

As shown by the analysis above, postsynaptic storage is optimal, if the number of processes is
smaller than the mean number of connections per neuron. For biological networks with realistic
numbers of connections, this is true up to 104 processes. In addition, some types of plasticity
(e.g. STDP) need to take into account the spiking behavior of the pre- and postsynaptic
nodes, which is available naturally on the process of the postsynaptic neuron. Therefore, we
decided for postsynaptic connection storage in NEST 2. To reduce the overall amount of
communication we could store the id of the processes where a source node has targets on the
machine of the presynaptic node and only send events there.

Figure 2.5: The data structure for connection storage (modified from Eppler, 2006, Figure
4.3): Connections are stored inside a four-dimensional data structure. Each connection is
uniquely identified by four numbers: the thread of the target node (tid), the global id of the
source node (sid), the synapse type (st), and the port (p).

Using postsynaptic storage, each node or proxy only stores the subset of connections that
reach nodes (but not proxies) on the same virtual process. Thus, the connections are also
distributed over all virtual processes. The data structure for the connections is separate from
the node list, and has a separate dimension to store the connectivity of each thread, as to
minimize cache problems. It is shown in Figure 2.5.
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2.3.5 Memory requirement

For a network of n nodes, each requiring SN bytes of memory, and proxy nodes requiring SP
bytes, the memory required by nodes on each process is given by:

Mnodes =
n

NMPI
SN +

(
n− n

NMPI

)
SP

Typical values are SN = 480 bytes and SP = 56 bytes. Thus, for 10 and more MPI
processes, more than half of all memory occupied by nodes is occupied by proxies, and more
than 90% for more than 80 MPI processes. In absolute numbers, however, Mnodes is only
around 70 MB for a network of 106 nodes distributed across 100 processes, which is negligible
compared to the memory required for the connections in the network. From a performance
perspective, a node list filled with mostly proxies could become suboptimal if the node list
became so large that it could no longer be held in cache memory efficiently. In this case, a
fast hashing look-up may become more efficient (see Section 6.1).

Because the connections dominate the memory requirements of large networks, NEST splits
them up such that each virtual process only stores the incoming connections to its own nodes.
Each connection consists of at least a pointer to the local target node, along with the delay
(integer), and weight (double) of the connection. The memory required for connections per
MPI process is:

Mconn =
n× k × SC

NMPI

where k is the number of outgoing connections per node and SC the memory per con-
nection. For connections with constant weight and delay, SC = 32 bytes; plastic synapses
require more memory. A network of 106 nodes with 104 connections each thus requires 32 GB
connection memory per process if distributed across 10 MPI processes, but only 3.2 GB per
process if distributed across 100 processes.

2.4 Network creation

The network in NEST is created by running a simulation script, written in either SLI (the
language of NEST’s built-in simulation language interpreter), or Python (using PyNEST; see
Chapter 3). The structure of such a script depends on the actual aim of the study, but generally
consists of the following steps:

1. Creation of nodes (sub-networks, neurons, and devices).

2. Connection of nodes.

3. Simulation.

4. Readout of the recorded data and data analysis.

In the distributed case (i.e. using multiple processes), each process executes the same
simulation script. The user does not have to take care of the actual details of distribution, but
only has to specify the number of processes to use.
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2.4.1 Factories for nodes and connections

Using the function SetDefaults users can modify the defaults of the built-in models, and using
CopyModel, they can create their own models from existing ones. NEST 1.9 supported the
reset of the simulation engine. However, it was not possible to restore the original parameters
of models in a running session, and NEST had to be restarted to do so.

The creation of nodes and synapses is based on factories (Gamma et al., 1994) that contain
prototypes of the models. If the user creates a new node or synapse, a copy of the desired
prototype model is placed in the node list, or in the connection storage system.

To allow restoring the original model parameters after a reset of the simulation engine, we
designed a data structure for models that consists of two parts: the first part contains pristine
models without any modifications by the user, while the second part contains copies of all
pristine prototypes plus prototypes that were created by the user with CopyModel. When a
new model is registered with the simulation engine, it is added to the first part of the data
structure. Modifications of the parameters and the addition of new models by the user only
happens in the second part. When the simulation engine is reset, the models of the second
part are deleted and replaced by the ones from the first part. This data structure is used both
for neuron and synapse models, which eases the maintenance of the two systems.

2.4.2 Distribution of nodes

In normal operation, the virtual process, a node is assigned to is determined by its global id
as explained in Section 2.3.2. However, compound models that consist of a parent node and
several child nodes, require the direct manipulation of child nodes by their parent node. An
examples for this kind of model is a retina model, which takes responsibility for all the receptor
models that are inside of it in order to define global properties like sensitivity, or receptive
fields. To support the non-modulo distribution of nodes, sub-networks in NEST 2 have been
extended by the new boolean property children on same vp, which can be used to force the
assignment of child nodes to the same virtual process as the parent node. This means that
all algorithms had to be changed to ask nodes for the id of their virtual process instead of
assuming a modulo assignment. Another application of this feature is manual load balancing:
if activity hot-spots in the network are known, the communication volume can be be minimized
by grouping nodes with strong inter-group connectivity.

2.4.3 Compatibility checks for connections

During connection setup, the sending node checks if the receiving node is able to handle the
type of event it will send during simulation by calling the receiver’s connect sender() function
with an event of the respective type. The receiver answers by either assigning a receptor port
to the connection or throwing an exception. The reason to perform this handshake at setup
time is that we do not want to check this for each event during the simulation, as this would
considerably slow down the simulation.

In the test phase of NEST 1.9, we observed wrong simulation results if non-spiking devices
(e.g. dc generator) were connected to neurons. After an investigation of the problem, we
found that the problem was related to the handshake explained above, as it only checked com-
patibility of source and target neuron, but did not check the compatibility of the Connection.
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Many plasticity rules (e.g. STDP; see Morrison et al., 2006) update the weight of the
connection if a presynaptic neuron fires a spike based on the time of the spike. The rules
expect that spikes are sparse and carry all information in their time stamp. However, non-
spiking devices transmit an analog value in each time step of the simulation to their targets.
If a non-spiking device is connected to a target through a plastic synapse, the synapse er-
roneously updates the weight in each time step, because it assumes spikes as the means of
communication. This kind of error was not prohibited by the handshake of NEST 1.9.
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source

event

target

Connection

set_weight(w)

set_delay(d)

check_connection(source, target, receptor_type)
1

e

connect_sender(e, receptor_type)

2

4

3

5

Figure 2.6: Sequence diagram of the handshake to check node and event compatibility: 1© Set
target for the connection object. 2© Check if the event type is supported by the connection,
otherwise throw UnsupportedEvent. 3© Check if receptor type and event type are supported
by the receiver, otherwise throw UnknownReceptorType or IllegalConnection. 4© Set the
receptor port for the connection. 5© The Connection is now fully established.

To solve the problem, we designed a new handshake algorithm, which includes a check for
the compatibility of the connection with the used event.

The base class for connections was extended by the function check event(), which is
present once for each event type in NEST. The implementation in the base class just throws an
UnsupportedEvent exception. If a synapse type derived from Connection wants to support
a certain type of event, it can overload the variant of the function for the corresponding event
with an empty definition. The sequence of function calls and object creations in the handshake
is shown in (Figure 2.6).

2.4.4 Inspection and manipulation of connections

In NEST 1.9, it was complicated to inspect and manipulate connections once they were set
up. The main reason for this was the complex data structure for connection storage, which
provided no easy way for the user to access connections. However, in studies of synaptic
plasticity and learning it is important to have access to the state variables of the connections,
and to be able to manually modify the connections according to learning rules.
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NEST 1 returned handles to new connections after their creation. Because of the higher
memory requirements due to the complexity of the data structure for synapse storage (see
Section 2.3.4), we dropped this feature during the development of NEST 1.9. However, a
connection could still be uniquely identified by four integer values:

1. The global id of the source neuron.

2. The thread id of the target neuron.

3. The synapse type id of the connection.

4. The port of the connection.

The port of a connection is the index of a Connection object in the connection list of
the presynaptic neuron on a specific thread with a specific synapse type. This means that the
port is only meaningful together with all three other values.

NEST 1.9 provides the functions GetConnection and SetConnection to retrieve and
modify connection information. Both functions got the four numbers for the identification of
a connection as arguments, while SetConnection additionally got a dictionary with the new
parameters for the connection. However, this meant that the user had to track the order of
connection creation manually in order to know the port of a connection. The following listing
contains an short example that illustrates this method to retrieve synapse parameters:

1 / i a f n e u r o n Create /n1 Set
2 / i a f n e u r o n Create /n2 Set
3 / i a f n e u r o n Create /n3 Set
4 n1 n2 Connect
5 n1 n3 Connect
6 n1 0 / s t a t i c s y n a p s e 1 GetConnection / conndata Set

Lines 1 to 3 create three integrate-and-fire neurons, n1 to n3. The neuron n1 is connected
to neuron n2 and n3 in line 4 and 5, respectively. To query the connection parameters of the
connection between n1 and n3, we use the function GetConnection. It expects the neuron’s
global id (n1), the thread of the target node (0), the synapse type (static synapse) and the
port of the connection (1). Knowing the port of the connection requires to track the order of
connection creation. In simulations with random connectivity this is often impossible.

For NEST 2, we designed a mechanism for inspecting and modifying connections that fits
naturally into the already existing framework to inspect and modify the parameters of nodes.
The status of nodes in NEST can be retrieved using the function GetStatus, which gets a
global id as argument and returns a dictionary with the current values of the model variables.
SetStatus expects a global id and a parameter dictionary as arguments and sets the model
variables on the node.

The solution for connections consists of two new language elements for NEST’s simulation
language interpreter: first, a new data type called ConnectionDatum, and second, a new
function FindConnections. ConnectionDatums can be used as arguments for the functions
GetStatus and SetStatus (like global ids for nodes) to inspect and modify the properties of
a connection. They encapsulate the four numbers that identify a synapse. FindConnections
gets a dictionary that contains the source gid, and optionally a synapse type and a target gid as
arguments, and returns a list of ConnectionDatum objects for the connections that match the
given criteria. It does this by performing a complete linear search through the synapse storage
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system, constrained by the given arguments. The new solution is much more convenient than
the old one and at the same time improves the consistency between the interface functions
for nodes and connections, which eases the maintenance of both NEST’s code and the model
specification of the user. The following listing functionally contains the same example as
above, but is using the new mechanism:

1 / i a f n e u r o n Create /n1 Set
2 / i a f n e u r o n Create /n2 Set
3 / i a f n e u r o n Create /n3 Set
4 n1 n2 Connect
5 n1 n3 Connect
6 << \ s o u r c e n1 \ t a r g e t n3 >> FindConnections / conn Set
7 conn { GetStatus } Map 0 get / conndata Set

Lines 1 to 3 create three integrate-and-fire neurons, n1 to n3. The neuron n1 is connected
to neuron n2 and n3 in line 4 and 5, respectively. To query the connection parameters of the
connection between n1 and n3, we now use the function FindConnections to obtain handles
for all connections between n1 and n3 in line 6 and retrieve the parameters of the connections
in line 7 by applying GetStatus to all elements of the list of handles.

2.5 Network update

Figure 2.7: Flow chart of the scheduling algorithm in NEST: The light gray boxes indicate
actions that are executed in parallel by all threads, the dark light boxes indicate actions that
are executed in parallel by all processes. The simulation starts at t=0 and is executed in a
loop that runs until the time specified by the user (Tstop) has elapsed. During the simulation,
we first deliver all events from the previous update cycle and then update all nodes. After this
step, we exchange the event buffers that contain spikes for remote machines. The last step is
to advance time by the smallest delay in the network (∆) and start the loop anew.
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For the simulation of time discrete systems, two basic update schemes exist: time based
and event based. In time based simulations, the system is updated in regular intervals, known
as the simulation time step. In event based simulations, the elements are only updated when
they receive events (Zeigler et al., 2000).

NEST evaluates the network model using a hybrid scheme between event based and time
based update. The network elements are updated on an evenly spaced time-grid ti := i ·∆,
where ∆ is determined by the shortest transmission delay in the network. This is possible,
because the elements are effectively decoupled during this time span and events from other
elements cannot influence the state of their targets. At each point in time, the network is in
a well-defined state Si. Starting at an initial state S0, a global state transfer function U(S)
propagates the system from one state to the next, such that St+∆ ← U(St).

The network model in NEST is evaluated by executing the loop shown in Figure 2.7. During
the execution of U(St), nodes may create events that must be delivered to the target nodes
after a delay that depends on the connection. The nodes have a local event queue to store
the events until they are due.

2.5.1 Event buffering and delivery

Events by devices that are created during the update cycle only need to be delivered to local
targets, because devices are replicated in each virtual process (see Section 2.3.2). The replicas
are responsible for providing events to their local targets. In contrast to this, the spikes that
are created by neurons must be delivered to local and remote targets. To make this distinction,
the global send() function of the network class has to distinguish between events for remote
nodes and events for local nodes based on the identity of the sender and the type of event.

type(event) == spike

true

false
deliver event locally

buffer event and deliver
to local and remote targets

source has proxies?

true

false

Figure 2.8: Flow chart of the logic for sending events: If the event is not a spike, it is delivered
directly. If the event is a spike sent by a device (a node without proxies), it is also delivered
directly. Spikes by neurons are buffered and sent to local and remote targets at the end of the
time slice.

The send() function is implemented as a C++ template with two specializations: one
variant only accepts non-spike events and delivers directly to local targets. This function is
used by non-spiking devices, e.g. current generators. The other variant only accepts spike
events and switches between buffering for remote delivery and local delivery. If the source has
proxies, this means that it is a neuron and the spikes are buffered locally until the end of the
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time slice. If it does not have proxies, it is a device and the spikes can be delivered to local
targets directly. The logic for sending an event is shown in Figure 2.8

Note that this design and its current implementation does not support non-spike events
to be sent to remote targets, which prohibits the modeling of neurobiological concepts like
gap junctions (direct electrical couplings between neurons that require a current flow from one
neuron to another) in a distributed scenario.

At the end of the time slice we ensure that all processes are informed about the content
of all spike buffers that have been filled during the update phase. To minimize the amount of
data sent to remote processes, we only send the id of the sender and markers, that separate
spikes originating from different time steps within a time slice of length ∆. After the exchange
of the spike buffers, the events are reconstructed on the machines, where the spiking neuron
has targets. This reconstruction is possible, because the connection information is stored
completely on the process where the receiving node is located. This method for event buffering
is described in more detail in Morrison et al. (2005) and Eppler (2006).

Improved low-level communication

Paranel and NEST 1.9 used a custom implementation of the CPEX algorithm (Tam & Wang,
2000; Morrison et al., 2005) on top of the message passing interface (MPI) to perform the
pairwise exchange of spike buffers. Because the CPEX algorithm did not scale well for large
numbers of processes, we tried to find an alternative algorithm for NEST 2.

As we already used MPI, two obvious candidates were the functions Allgather() and
AllgatherV() provided by the library (Message Passing Interface Forum, 1994). The latter
is very efficient, but requires an additional exchange of the buffer sizes before the actual com-
munication of data. Our benchmark simulations showed that the communication bottleneck
for our applications is the frequency and the latency of communication, rather than the size
of the transmitted packets. This finding lead us to favor Allgather().

However, Allgather() requires that all send buffers must have the same size, and the
question of how to determine this size arises. The optimal size of the buffers depends on the
network size and its activity, which might not be stationary. This means, we need an algorithm
that adapts the buffer sizes progressively until they are big enough.

At the beginning of the simulation, the buffers are set to their smallest possible size (enough
for all the time-slice markers). In each simulation cycle, each machine collects its spikes in a
separate buffer. If the send buffer available is smaller than the size that is needed, it writes an
error flag to the first position of the send buffer and the size it requires to the second position,
instead of copying its spikes to the send buffer. After this step, Allgather() is carried out.
After the communication is finished, each machine checks the start of each section of the
receive buffer for error flags. If there are any, the size of the send buffer is set to the largest
size requested by the machine which reported the error, and the size of the receive buffer is set
to the number of machines times the size of the new send buffer. Then each machine copies
its spikes to the new send buffer and Allgather() is repeated. The flow of the algorithm is
shown in Figure 2.9.

Typically, the buffer sizes reach an equilibrium after only a few cycles. No difference in
simulation time can be observed between such a simulation, and one in which the buffer size
was set to the (experimentally determined) equilibrium size at the beginning of the simulation.
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initialize buffers

simulation

buffer too small?

write error flag and
required size to buffer

write spikes to buffer

communicate error flag in buffer?

true

false

true

false

resize buffer

Figure 2.9: Flow chart of the resizing algorithm for communication buffers: The communication
buffers are initialized to provide space for all markers. After simulation each process checks if
the buffers are too small. If yes, an error flag and the required size is written to the buffer.
Otherwise, the spikes are written to the buffer. After the communication of the buffers, the
receiving process checks whether one of the received buffers contains an error flag. If yes, the
buffer is re-sized to the maximal requested size and the spikes are written to the buffer and
communication is repeated. If no, the simulation continues.

Besides scaling, another advantage of using a standard function of the communication
library is that we do not have to maintain its implementation.

2.6 Readout of data

In NEST 1.9, it was not possible to obtain the data collected by the device replicas with a
single call to GetStatus. The user had to query each device replica separately by looping
over the threads and calling GetStatus for each replica. This made it complicated to transfer
simulations to machines with a different number of processors, because the simulation scripts
had to be adapted for each machine. Moreover, this meant that all functions concerned with
devices had to take the thread as additional argument, which made the simulation code more
complex and dependent on the number of threads and thus on the details of parallelization.
The following listing illustrates this problem with the example of data retrieval from a spike
detector in a simulation with two threads:

1 / s p i k e t i m e s [ ] def
2 [ 0 1 ] {
3 sd GetAddress exch append GetStatus
4 / e v e n t s get / t i m e s get s p i k e t i m e s exch cva j o i n / s p i k e t i m e s Set
5 } f o r a l l
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Line 1 defines an empty array spike times for storing the spike times received from the
spike detector. The list of loop variables corresponds to the thread ids ([0 1]), and is defined
in line 2. The values are put onto the stack one after the other. Line 3 puts the global id
of the spike detector (sd) onto the stack and converts it to the address representation using
the command GetAddress. Addresses are an alternative way to identify nodes and allow the
hierarchical addressing of nodes. The command exch exchanges the two topmost elements
on the stack, so that the thread id comes after the address. The thread id is appended to
the address as to obtain an extended address that uniquely identifies the device replica. Next,
GetStatus is called on the extended address in order to obtain the parameter dictionary of
the spike detector. Line 4 extracts the event times array (times) from the dictionary, converts
it to a SLI array (using cva), concatenates it with the content of the array spike times and
assigns the resulting array again to the variable spike times. The loop is run for each element
in the list of loop variables (defined in line 1) by calling forall in line 5.

In order to retrieve data from all threads more conveniently, we developed a mechanism
for the data collection for NEST 2, which does not require loops in the user code.

The detailed layout of the internal data structures for the storage of recorded data is only
known in the concrete implementation of a certain device class. This means that the devices
themselves have to collect the data from the replicas on other threads. As the devices do not
know the number of threads a priori, the mechanism for data collection has to be dynamic and
take into account the real number of threads in a simulation.

SLI::GetStatus device on thread 0 device on thread 1 device on thread n

get_status(Dictionary& d)

...

1

get_status(Dictionary& d)

2

loop over all threads

get_status(Dictionary& d)

get_status(Dictionary& d)

...

3

4

Figure 2.10: Sequence diagram of the collection of data across threads: 1© The SLI function
GetStatus creates an empty dictionary, d. This is handed to the device on thread 0 in the call
to get status(). 2© The device on thread 0 creates an empty dictionary, called events, and
adds its own data. It then loops over all other threads. 3© The devices on all other threads
just add their data to the events dictionary. 4© The events dictionary contains the data of
all threads and is returned to the user.

All recording devices in NEST are derived from the common base class RecordingDevice.
It takes care of the recording interval and provides mechanisms to record the sender and the
time stamp of the events it records. A spike detector, for example, only needs to record
the data the base class already registers. Recorders for analog data additionally record other
variables from the connected neurons (e.g. the membrane potential, or inhibitory or excitatory
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conductances). This means that the new mechanism for data collection has to allow an
incremental addition of new data fields to the dictionary returned by GetStatus.

The previous design of GetStatus only returned the data of the device replica on thread 0.
The data on other threads had to be retrieved by explicidly passing the thread to GetStatus.
In the new implementation, a call to the SLI function GetStatus calls the C++ function
get status() of the respective node on thread 0 with an empty dictionary as argument,
which creates an events dictionary in the empty status dictionary and populates it with its
own data. After that, it iterates over all siblings on other threads and calls get status() on
them. These nodes only append their data to the already existing data arrays in the events

dictionary. At the end of the loop, the data of all replicas is contained in the events dictionary
in the status dictionary, which is returned to the user. The new algorithm for data collection
is shown in Figure 2.10.

Using the new mechanism, the example above can be written in a much more compact
way, as the loop is carried out by GetStatus internally. A single line of code (compared to
five lines with the old mechanism) is now enough to retrieve the event times from the spike
detector sd:

1 sd GetStatus / e v e n t s get / t i m e s get / s p i k e t i m e s Set

It is important to note that the temporal sequence of the returned data is not globally
maintained. The data of each device replica is sorted by the time stamp of arrival, but the
data arrays of all replicas are just concatenated. However, sorting the data after the simulation
can be carried out much more efficiently by the user, and additionally provides greater flexibility
with respect to the analysis that follows simulation and data collection.

2.7 Benchmark results

We performed benchmark simulations with a random network based on the work of Brunel
(2000) to assess the quality of our new algorithms and data structures for different network
sizes and different numbers and types of connections. Depending on the computing power of
the tested machine, we modified the total run-time of the simulation, and the type of synapses
used in the network (static or STDP). Many of the benchmarks in the following sections exhibit
super-linear scaling. A theoretical analysis of cache effects explains this and can be found in
Section 6.3 of Eppler (2006).

2.7.1 Performance on multi-processor machines

One of the design goals for NEST 2 was to achieve a performance and scaling comparable
to the Paranel simulation engine, which showed super-linear scaling in certain situations. The
benchmarks to assess the performance and scaling on small multi-processor machines were run
on a Sun Fire V40z with 4 Dual Core AMD Opteron 875 processors, each having 1 MB of
cache memory and a clock speed of 2.2 GHz.

Figure 2.11 shows the simulation run-time and speed-up of NEST 1 and NEST 2 on a
small multi-processor machine. In general, NEST 2 exhibits much better scaling, although the
absolute performance of both versions is approximately the same as in the serial case. The
improved scaling can be explained by the use of the cache-optimized network representation
in NEST 2 (see Section 2.3).
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Figure 2.11: Scalability of NEST 1 and NEST 2 on multi-processor machines (modified from
Eppler, 2006, Figure 6.1): The simulated network contained 104 neurons, with 1000 random
connections each; the exact model is described in Brunel (2000). Simulation time is 1 biologi-
cal second. Green line: NEST 1 using multi-threading; red line: NEST 2 using multi-threading;
cyan line: NEST 2 using message passing; the gray line indicates linear speed-up. (A) Simu-
lation time against number of processors, log-log representation. (B) Corresponding speed-up
SP with P processors against number of processors, log-log representation (SP = T1

TP
; T1 is

the serial run-time, TP the parallel run-time with P processors).

An important thing to note here is that the speed-up of the multi-threaded version of
NEST 2 is worse than that of the message passing version. On first sight, this contradicts the
intuition that a program, which lives in a single memory space and where objects can interact
by calling each other’s member functions directly ought to be faster than if message passing
over a special communication library is used.

However, the explanation for the different scaling is again the processor’s cache: multi-
threaded programs suffer from much more cache problems (see Section 2.2), because the data
structures for the different processors are never completely separated, as they are when using
different processes.

2.7.2 Performance on small clusters

To determine the performance and scalability of the new algorithms and data structures on
medium-sized clusters, we ran a simulation of a large random network on a cluster with
20 compute nodes, each equipped with 2 AMD Opteron 250 processors with 1 MB cache
memory and a clock speed of 2.4 GHz. The computers were connected with a Dolphin/Scali
interconnect, and we used the custom MPI implementation by Scali.

Figure 2.12 shows that we achieved our design goal that NEST 2 provides good scaling
comparable to the scaling of Paranel. The reason for the difference in absolute performance is
due to the simpler design of Paranel’s simulation engine compared to NEST.
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Figure 2.12: Scalability of NEST 2 and Paranel on small computer clusters (modified from
Eppler, 2006, Figure 6.2): The simulated network contained 104 neurons, with 1000 random
connections each; the exact model is described in Brunel (2000). Simulation time is 50
biological second. Green line: Paranel; red line: NEST 2; the gray line indicates linear speed-up.
(A) Simulation time against number of processors, log-log representation. (B) Corresponding
speed-up SP with P processors against number of processors, log-log representation (SP = T1

TP
;

T1 is the serial run-time, TP the parallel run-time with P processors).

2.7.3 Performance on HPC facilities

The algorithms and data structures of NEST 2 were designed for the use on small multi-
processor machines and small and medium-sized computer clusters (< 100 compute nodes).
However, during the writing of this thesis, much larger machines became available and we
tested the implementations on them. In general, our algorithms also show good performance
on larger machines. To assess the scaling of the algorithms on large clusters, we performed
benchmark simulations on two different HPC clusters:

The BlueGene/L architecture combines two PowerPC 440 processor cores, each with a clock
speed of 700 MHz, together with main memory, a cache system and a communication
subsystem on a board. The boards can be combined without introducing bottlenecks.
The machine we used is located at the Riken Brain Science Institute in Wako-shi, Japan.

The BlueGene/P architecture is similar to the architecture of the BlueGene/L, but uses four
PowerPC 450 cores at 850 MHz per board. The machine we used (JUGENE) is located at
the research center in Jülich, Germany and ranks number 4 in the November 2009 issue
of the TOP500 supercomputer list (http://www.top500.org/list/2009/11/100).

Figure 2.13 shows that the algorithms of NEST 2 also scale linearly up to 1024 processors
on very large clusters, although the algorithms were not designed for this kind of machines.

However, the performance drops when going to even more cores: in order to reduce the
computing time by one half we have to use four times as many processors if we go beyond 1024

http://www.top500.org/list/2009/11/100
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Figure 2.13: Scalability of NEST 2 on large computer clusters: The simulated network con-
tained 112,500 neurons, with 11,250 random STDP connections each; the exact model is
described in Morrison et al. (2007). Green line: BlueGene/L; red line: BlueGene/P; the gray
line indicates linear speed-up. Simulation time against number of processors, log-log represen-
tation.

cores. This can be understood by considering that 1024 cores means that each processor core
is assigned less than 100 neurons, and only about one million connections. As a consequence,
the computational cost for updating the neurons is dropping below the cost for communication
and the positive effects of the cache on the overall simulation time and scaling disappears.

2.8 Summary

This chapter summarized the design of the algorithms and data structures for the simulation
engine of NEST 2. Although the described methods are tailored to the problems and precondi-
tions found in this simulator, they are general in the sense that they solve problems that occur
in the design of all simulators for spiking neural networks.

NEST 2 provides the possibility to run simulations of large biological neural networks
on multi-processor machines and on computer clusters. It supports the use of heterogeneous
neuron and synapse models in the same network. Using cache-optimized data structures for the
network representation and a hybrid simulation kernel with threads locally and message passing
on the cluster, we observe excellent scaling even on very large facilities for high-performance
computing, e.g. IBM’s BlueGene.

Many neuroscientific studies depend on the run-time and the scaling of the simulations
in a crucial way. This means that many studies would not have been possible without the
improvements presented here. Examples are the investigation of plasticity and learning (Mor-
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rison et al., 2006; Potjans et al., 2009), the analysis of signal flow in large structured net-
works (Schrader et al., 2009; Potjans & Diesmann, 2008b), the cross-validation of the neu-
romorphic hardware developed in the FACETS project against simulation results (Brüderle
et al., 2007), models of working memory (Gewaltig, 2009) and many more. For a detailed
list of publications carried out with NEST, see the homepage of the NEST Initiative at
http://nest-initiative.org/index.php/Publications.

The use of factories for the creation of nodes and connections allows to create custom
models from existing ones. With the improved design of the factory classes in NEST 2, the
usability of these classes became easier for the user, while at the same time reducing the
maintenance effort for the developers.

The removal of the implicit synapse context for all functions associated with handling
connections and the improved handshake during connection creation make it easier to write
correct code and contribute to the elimination of many errors in the simulation code that are
hard to find.

With NEST 2, we succeeded to hide the implementation details of multi-threading from
the user, who only has to set the desired number of threads before setting up the network.
This constitutes a major improvement over previous versions of NEST, as it makes it easier to
run the same simulation on different machines. In the current release of NEST, it is possible
to inspect and modify synapses after they have been established using an interface that is
consistent with the interface to inspect and modify neurons and devices, and to retrieve the
data from devices without the need to think about threads. This improves the readability of
simulation descriptions, which eases the independent reproduction of simulations by others.

http://nest-initiative.org/index.php/Publications
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Chapter 3

Communication between user and
simulator

Chapter 2 introduced the simulation engine and the technology behind NEST, and explained
how to efficiently simulate large-scale biological neural networks with a great number of neurons
and realistic connectivity. However, pure simulation performance is only one component of an
efficient simulator. The second component is nicely illustrated by the following quote from
Wilson (2006):

Increasingly, the real limit on what computational scientists can accomplish is how
quickly and reliably they can translate their ideas into working code.

This quote highlights the importance of a usable and convenient user interface to ease
the work of the researchers who use the software. Since its first version, NEST provides a
built-in simulation language interpreter (SLI ) for the interactive setup of the network and
the control of the simulation engine. Because of the large number of elements involved in
network simulations of spiking point neurons, this has proven advantageous over a graphical
user interface. However, SLI is a stack machine, which means that functions expect their
arguments on an operand stack and return their results back to this stack. As a consequence,
all operations have to be formulated in reverse polish notation (Burks et al., 1954). This makes
SLI hard to learn and use for novices. Moreover, SLI uses a custom language tailored to the
concepts of NEST. New users have to learn both, the concepts of NEST and the language of
SLI in order to use NEST, and they asked for a more convenient user interface.

In addition to lowering the initial barrier for new users, a new and more convenient user
interface for NEST could provide the chance to simplify the task of writing model descriptions,
and make it easier to share these descriptions with other researchers. On the other side, a new
interface has to support legacy code that has been written for SLI over the last years.

During the development of NEST, different alternative interfaces for the simulation engine
have been designed and implemented. Examples of a successful coupling to other programming
languages are bindings for Tcl/Tk (Diesmann & Gewaltig, 2002), Mathematica, Matlab, IDL
and Java. However, none of these interfaces was supported by a large user community and
their development was discontinued often already after a short time. One decisive advantage
of SLI is that it does not depend on third-party software and allows NEST to be completely
self-contained and independent.
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3.1 Languages for neural simulation specification

In the early days of computational neuroscience, standard simulators were not available to the
researchers in the field. The question of user interface design and the choice of an appropriate
simulation language did thus not arise. Each researcher wrote custom code for the problem at
hand either in a general purpose language like C/C++ or Java, or in a scientific programming
environment like Matlab (MathWorks, 2002) or Mathematica (Wolfram, 2003). This approach,
however, had several drawbacks:

• The simulation code was written to answer one scientific question, and thus could not
be used for other studies.

• The code was often hard to read and hard to maintain by other people, as these goals
were not the aim of the authors. As a result, many simulators were abandoned after the
end of the scientific project they were built for.

• The independent reproduction of simulations was often complicated as the simulation
code was only rarely published with the model.

• The correctness of the simulator code was unknown, because an independent review was
not possible.

This approach to writing simulators did not scale well beyond the current problem, as the
simulators of that time were not designed to be sustainable software products, but rather were
written to address one specific scientific question. A central problem of this approach was code
quality and maintainability. Many of the authors were neuroscientists with basic programming
skills, but without a proper computer science background. This means that standard methods
and techniques for common problems were not used and brute-force solutions were often
favored over a careful design of the software.

When the field matured, some simulators emerged as the de-facto standard tools in specific
problem domains and were used by a larger community. Prominent examples are NEURON
(Hines & Carnevale, 1997) and GENESIS (Bower & Beeman, 1997) for the simulation of
detailed morphologically realistic compartmental models, and NEST (Gewaltig & Diesmann,
2007) and CSIM (Natschläger, 2003) for the simulation of large networks of spiking point
neurons. The source code of all these simulators is available electronically, which allows an
independent control of quality and of the correctness of the algorithms used.

Although this second phase in the development of computational neuroscience had many
advantages over the previous era, the different simulators still used different user interfaces.
The simulators that were written in scientific programming environments like Matlab and
Mathematica used the user interface components of these environments as their primary in-
terface, while the other simulators had a custom graphical user interface based on an external
library, or used a custom programming interface.

Introducing a dependency on third-party software for the user interface has the disadvantage
that the simulator can only be used on platforms where the user interface library runs and that
the fate of the simulator is coupled to the fate of the library.

A summary of the history of simulation languages in computational neuroscience is con-
tained in Davison et al. (2010). The following section contains a detailed description of NEST’s
user interface.



55

3.1.1 The simulation language interpreter of NEST

NEST’s built-in simulation language interpreter (SLI) allows the interactive control of NEST’s
simulation engine. Originally it was designed as an intermediate language layer between the
simulation kernel and a new language, which supports the formulation of model descriptions
using neuroscientific concepts and terminology. However, this new language was never imple-
mented, and SLI itself was used for the specification of simulations.

SLI is a stack machine and uses a syntax based on PostScript (Adobe Systems Inc., 1999).
The term SLI is used both for the interpreter and for its programming language. SLI is a
multi-paradigm language that allows to use object-oriented, procedural, and functional lan-
guage constructs in a single program. Flexible data structures like heterogeneous arrays and
dictionaries (named parameters; Finkel, 1996) together with powerful operators like Map enable
a compact formulation of algorithms. However, due to the reverse polish notation SLI uses,
the language is hard to read. The syntax of SLI is exemplified by the following listing, which
defines a procedure to calculate the alpha function given by α(t, τ) = t · e−t/τ :

1 / a l p h a
2 {
3 / tau Set
4 / t Set
5 t neg tau div exp t mul
6 } def

The first line contains the name of the procedure. All literal names in SLI start with the
token /. Procedures are enclosed in curly brackets (line 2 and 6). Line 3 and 4 store the
arguments to the function in variables called tau and t, respectively. Please note the reverse
order of assignment due to the stack semantics. The actual value of the alpha function is
calculated in line 5. The procedure is assigned to the name alpha using the keyword def in
line 6. A call to the function takes two (numeric) arguments from the stack and returns the
result back to the stack. If the type of the arguments are incompatible with the functions used
inside the procedure, an error is raised.

In principle, SLI can be used as a general purpose scripting language like Bash (http://
www.gnu.org/software/bash) or Python (http://www.python.org/). It provides modules
for random number generation, string processing, file system access, and has a comprehensive
library of mathematical functions and operators, which makes SLI a powerful tool also outside
the simulation of neural systems.

SLI has a modular architecture, where dynamically loaded extension modules can add new
data types and functions by registering them with the simulation engine. Fundamentally, the
NEST simulation engine is only one of many modules, which adds functions for the simulation
of neural networks to SLI. This includes functions and data types for the creation and ma-
nipulation of neurons, devices and connections, and for the control of the simulation engine.
The following example shows the creation, parametrization, connection, and simulation of two
neurons in SLI:

1 / i a f n e u r o n Create /n1 Set
2 n1 << / I e 1500 .0 >> SetStatus
3 / i a f n e u r o n Create /n2 Set
4 n1 n2 Connect
5 1 0 0 . 0 Simulate

http://www.gnu.org/software/bash
http://www.gnu.org/software/bash
http://www.python.org/
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Line 1 and 3 each create a neuron of type iaf neuron (a simple integrate-and-fire neuron)
and assign its global id to a variable for later reference. Line 2 sets the unspecific background
current of neuron n1 to 1500 pA using the function SetStatus. The tokens << and >> are
used to define a dictionary, which contains the parameters as key-value pairs. The neurons are
connected in line 4. Line 5 simulates the network for 100 ms.

Implementation

The SLI interpreter uses two stacks to operate: the execution stack and the operand stack.
The first is used as internal data structure for the interpreter only, and is hidden from the user.
The operand stack holds user data.

The execution of commands in SLI is based on a main execution loop. In each cycle, the
interpreter fetches one token from the execution stack and calls a function, which depends on
the token’s type. For most token-types, e.g. numbers, strings and other data, the function
will simply move the token from the execution stack to the operand stack. Other tokens are
executable and the function will execute them appropriately.

Two types of executable tokens exist: SLI procedures and C++ functions. The SLI proce-
dures consists of a collections of SLI expressions delimited by the tokens { and }. An example
is the procedure alpha shown above. The second type of executable tokens are functions
written in C++. They have full access to the data structures and functions of NEST and SLI
and can retrieve data from the operand stack using member functions of the interpreter.

If the next token on the execution stack is a C++ function, it will be called directly. If the
token is a SLI procedure, it is executed, by executing each token of the procedure in sequence.
If all tokens of the procedure are executed, the procedure token is removed from the execution
stack and the interpreter continues with the next token.

Normal functions and procedures take their arguments from the operand stack and also
return their results back to this stack. In addition there are internal functions which operate
on the execution stack. These are used to execute procedure, loops and conditionals.

At start-up, the execution stack contains only one token. It is the parser which reads
characters from the standard input, translates them into SLI tokens and pushes them on the
execution stack. This token is then the next to be handled by the interpreter. After it has
been executed, the interpreter will again find the parser on its stack, and the cycle continues.
Once the execution stack runs empty, the interpreter will return.

An extensive description of the design and use of SLI is contained in Diesmann et al.
(1995). More sophisticated examples for neural simulations with NEST can be found along
with the source code of NEST and on the homepage of the NEST Initiative at http://www.
nest-initiative.org/.

3.1.2 Towards a general language for computational neuroscience

Many simulators for spiking neural networks provide a programmable interface to allow the
script-driven setup of the neural network and the convenient exploration of parameter spaces.
However, each of them uses a different programming and configuration language. For the
large-scale projects introduced in Section 1.6, this is a major problem, because they often rely
on multiple simulators, and a lot of effort is put into the development of tools to integrate the
data from different simulators and recordings from real neuroscientific experiments.

http://www.nest-initiative.org/
http://www.nest-initiative.org/


57

The members of FACETS (http://facets.kip.uni-heidelberg.de/) promoted the
use of Python as a general glue language to solve this problem and researchers started to
create tools for stimulus generation, the control of experiments and simulations, databases for
the results, and tools for data analysis in this programming language.

This development was sparked by the need for a consistent code base and inspired by a
strong trend towards Python in the scientific community in general (Dubois, 2007), although
Python was almost unknown in computational neuroscience at that time.

NEST was one of the main simulators used in the FACETS project, and we evaluated the
language based on the experience of other researchers in the project. Python has a number of
advantages over commercial programming environments like Matlab or Mathematica:

• It is free software, developed and supported by an active community with members inside
and outside of science.

• It is installed by default on almost all Linux and MacOS based computers.

• It has a large user base outside of science and thus also provides packages for other
purposes such as databases, multimedia, graphics, and networking.

On the other side, the availability of packages for scientific computing (http://www.
scipy.org/) and plotting (http://matplotlib.sourceforge.net/) make Python also a
good alternative to other free and open source programming languages like Tcl/Tk (Ouster-
hout, 1994) or Perl (Wall et al., 1996). Compared to many other languages, Python has a
very readable and concise syntax and provides a higher expressiveness (Prechelt, 2000), which
helps researchers to go from an idea to working code in less time. This means that a Python
interface for NEST could improve the productivity of its users, and at the same time ease the
readability of model descriptions.

Considering the advantages of Python above other languages and taking into account the
current trend towards this language in the computational neuroscience community, we decided
to explore the possibilities of a new user interface for NEST based on the Python programming
language.

3.2 A Python based user interface for NEST

The usual approach to creating Python bindings for existing software is to create a wrapper
library that exposes all data structures and functions of the application to Python. This can
either be done manually, using Python’s C-API (van Rossum, 2008), or automatically using an
interface generation tool like the Simplified Wrapper and Interface Generator (SWIG ; http:
//www.swig.org/) or an external library like Boost.Python (http://www.boost.org/).

However, this approach restricts the flexibility of the interface as it only allows to call
functions as they are and thus leads to problems regarding error handling and access control
for the functions and objects. This also means that it is not possible to extend the functions
in an easy way, or to use high-level definitions like the ones already present in SLI.

Another drawback of the common approach is that data conversion is carried out using
the standard mechanisms of the wrapper generator. As the generator does not know anything
about the data types in SLI, it cannot optimize the data conversion.

http://facets.kip.uni-heidelberg.de/
http://www.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://www.swig.org/
http://www.swig.org/
http://www.boost.org/
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With SLI, NEST already has a well-tested and stable interpreter for the setup and control of
neural simulations. Instead of exposing the classes and functions of NEST directly to Python,
we decided to deviate from the usual approach and instead keep the existing interpreter as an
intermediate layer between the Python based user interface and the simulation engine. The
reason for this is threefold:

1. A lot of SLI code has already been written, and we did not want to render this code
useless with newer versions of NEST by abandoning SLI. Moreover, many of NEST’s
built-in functions are written in SLI. This also includes the testsuite and the basic library
components.

2. Python is not yet available on some “exotic” hardware platforms, which we still need to
use. As SLI is completely self-contained and thus runs on all of these platforms, it still
allows the usage of NEST on them.

3. As a long-term project, NEST needs to remain independent of third party software
to guarantee its sustainability. This can be achieved by keeping NEST’s source code
separate from Python code, and avoid hard dependencies on Python.

Based on these observations, we implemented a first version of Python bindings for NEST.
The prototype implementation, called PyNEST, that resulted from this work, had a minimal
interface consisting of only three main functions:

sli push() pushed a Python data type as SLI data type onto the SLI stack. Initially, the
function only supported the conversion of the basic data types int, float, double,
bool, and string.

sli pop() returns a SLI data type from the stack as a Python data type to the user. The
function is thus the inverse of sli push() and supported the same set of basic data
types.

sli run() executes a command in SLI. The command has to be given to the function as a
string. As SLI’s parser was invoked with the string as argument, the string could contain
all tokens supported by the stand-alone version of SLI.

These functions allow the complete control of the NEST simulation engine from within the
Python interpreter. However, the commands still had to be formulated in SLI’s own language,
and given as arguments to the function sli run(). This meant that the users still had to
learn and use this language in order to use PyNEST. To solve this problem, the low-level API
described above was accompanied by a set of high-level functions to provide Python wrappers
for the most important functions in SLI and NEST.

The main advantage of using an interface generator like SWIG is that it eases the task of
creating the bindings. However, the low-level API of PyNEST only consists of three functions
that also contained the code for the conversion of data. Moreover, these functions do not have
to be modified when changes in NEST occur, so the effort for developing and maintaining this
level of the PyNEST API is minimal. In addition, we know the implementation of the data
types in SLI and can thus provide optimized routines for the data translation between SLI and
Python.
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3.2.1 Problems in the prototype

The prototype implementation of PyNEST demonstrated that it is, at least in principle, possible
to build a Python interface for NEST on top of the already existing infrastructure. However,
its use during a comprehensive test phase revealed several shortcomings that resulted mainly
from the fact that it was created in a very short time. The following paragraphs contain a
detailed analysis of the shortcomings.

The performance of the Python bindings was not good enough for the use in the day-to-
day work of researchers. This weakness especially showed when large amounts of data were
transferred from Python to SLI or vice versa. According to application run-time profiling and
other benchmarks, two main reasons were responsible for the low performance of the interface:

• The transfer of data from SLI to Python allowed only basic data types to be sent.
Complex data types had to be sent element-wise and re-assembled by the receiving
interpreter, which resulted in many function calls and thus too much overhead. To
eliminate this problem, a special data type for SLI, called PyDatum, was implemented as
a wrapper around an ordinary Python object. Neuron models that had to use complex
data types from Python or that wanted to return complex data types to Python had to
support this new data type, which introduced a hard dependency on Python in NEST.
Moreover, the SLI functions themselves were not able to work with this data type, which
severely limited the use of the interface.

• The data conversion routines were based on cascades of type checks and dynamic casts
to find the correct type of Python and SLI objects and carry out the conversion. This
solution was expensive and made the performance of type conversions depend on the
order of the checks.

The high-level API that contains Python wrappers for SLI functions was not complete and
many tasks still required the use of SLI code in the simulation description scripts of the users.
This meant that although users of PyNEST could use Python to run their simulations, they
still had to learn SLI in order to take full advantage of the capabilities of NEST. Moreover, the
semantics of the functions was not consistent over the set of functions in the high-level API.
The Create() function for example returned a complete list of identifiers to the new nodes,
while Connect() expected single node identifiers as arguments.

Another major problem of the prototype was that error conditions in NEST and SLI were
not propagated to the Python level. This meant that errors often went unnoticed, which
resulted in wrong simulation results and errors in the model description that were hard to find.
On the other side, errors in the implementation of the PyNEST APIs themselves were not
easily detected, as support for formal unit tests was missing from the prototype version of the
Python bindings.

The Python extension had to be compiled and linked to NEST manually. This was a
problem, as the build-time settings of NEST were not taken into account in PyNEST, or they
had to be transferred to the build process of the Python bindings manually.

In spite of all problems and restrictions, the Python bindings were used in the FACETS
project by several researchers. The reaction to them was mainly positive, and we decided that
we wanted to use them as the basis for a new user interface of NEST.
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3.2.2 Requirements for a Python based user interface

Based on the prototype implementation explained above, we went back one step in the design,
and made a formal analysis of the requirements for Python bindings for NEST. The following
requirements are crucial for the long-term sustainability of NEST and for the acceptance of
the new interface by a broad user community.

Independence

The NEST code base has to be kept independent of Python. This is important for machines
where Python is not available, and to keep NEST’s fate independent of the fate of Python.

This was violated by the introduction of PyDatum in PyNEST 1. A proper solution would
use SLI’s own data types for all communication between the two interpreters. This, how-
ever, requires a way for the efficient transfer of large amounts of data (e.g. random neuron
parameters) from Python to SLI and back (e.g. connectivity data).

Freedom of choice for the interface

It has to be easy for the user to choose between the interfaces SLI and PyNEST for simulations.
This is important to provide the users with greater flexibility and to allow them to chose the
interface that best suits their research needs.

This requirement is closely related to the requirement for independence. However, in
addition it requires an integration of the build process of PyNEST with the build process of
NEST in a way that a deactivation of PyNEST is easily possible.

Backwards compatibility

It has to be possible to run legacy SLI code without porting it to Python. This is important,
because a lot of published models were already in written in SLI.

This requirement is already fulfilled by the prototype implementation of PyNEST. Using
the function sli run() to call the SLI function run with the appropriate script as an argument
allows to use legacy code without further work in the interface. The only restriction of this
method is that neuron ids are not available in Python if the simulation is fully set up by an
external SLI script.

Extensibility

The extension of the high-level interface of the Python bindings has to be easy. This is
important to keep the maintenance complexity of the bindings to a minimum. At the same
time we must allow extension modules for NEST to integrate their functions into the interface.

The separation of PyNEST into a low-level API (containing the functions sli push(),
sli pop(), sli run(), and the routines for data conversion) on one side, and a high-level
API with Python wrappers for SLI function on the other side, allows an easy addition and
modification of high-level functions without the need for a recompilation of NEST or PyNEST.
This means that this requirement is also satisfied by the prototype. However, as the prototype
had to be built and installed manually, it was not possible to automatically install the Python
components of extension modules for NEST.
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Testability of correctness

NEST and SLI themselves come with an extensive suit of unit tests. They provide an important
means to guarantee that the simulator and its interface are working as expected and that the
results obtained with it can be trusted. The prototype implementation of PyNEST did not
have any unit tests.

To test the correctness of the high-level functions and to check if they carry out the same
operations as their SLI equivalents, a testsuite for PyNEST is indispensable. Such a testsuite
should use Python’s mechanisms to write unit test, but it should also be integrated with the
testsuite of NEST and SLI to allow a convenient check of all software components involved in
a simulation.

Error handling

It is important to propagate errors and exceptions from the C++ and SLI level of NEST
and SLI to Python, in order to inform the user about problems in the simulation description.
However, it is not enough to print out the error messages, as simulations are often run in loops
and thus errors would still go unnoticed. Proper error handling has to convert the errors in
NEST and SLI to Python exceptions, which the user can check for and handle appropriately.
This requires the design of an error handler in SLI, which catches errors and translates them
into the respective Python exceptions. These can then be handled without knowledge of the
error handling mechanisms of NEST and SLI.

Performance

It is clear that the performance of PyNEST is lower than that of SLI, as it constitutes another
software layer that involves function calls and additional parsing. Building the networks often
has a major share in the total run-time of the simulation of a neural network, so the overhead
should be sufficiently small.

However, the simulation time is only a minor part in the development of the model. The
major part is taken by the conception of the model and we can tolerate longer simulation time,
if the translation of an idea is faster by providing a more convenient interface.

3.3 The architecture of PyNEST

Although the current version of PyNEST is based on the original prototype explained above,
it constitutes a major improvement over earlier versions in that it solves all of the problems
explained above. The following sections contain a detailed description of the design and
implementation of the interface.

Just as the prototype implementation, the current version of PyNEST is only a light-weight
wrapper around SLI rather than a complete wrapper around NEST’s classes and functions. The
basic architecture of PyNEST is shown in Figure 3.1. PyNEST consists of two separate layers:
The low-level API is responsible for the basic interaction between Python and SLI, and provides
functions for the data conversion from SLI to Python and back. The high-level API provides
Python wrappers for the most important functions in SLI and NEST.
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Figure 3.1: The architecture of PyNEST: The lowest level is the simulation engine. It is used by
the simulation language interpreter and by the PyNEST low-level API. The PyNEST high-level
API uses the low-level API to communicate with the simulation engine. The user’s simulation
code can use functions from PyNEST, from Python, and from its extension modules.

3.3.1 The low-level API

The low-level API of PyNEST is implemented using the Python C API (van Rossum, 2008),
and calls the respective functions of SLI to push data onto the stack (function sli push()),
to retrieve data from the stack (function sli pop()), and to invoke SLI’s parser on strings to
execute commands (function sli run()). In addition it contains routines for the conversion
of Python objects to SLI data types (used by sli push()) and for the conversion of SLI data
types to Python objects (used by sli pop()).

This interface allows to run NEST simulations from Python by calling the respective func-
tions in SLI. The following listing repeats the example from Section 3.1.1 using this approach:

1 s l i r u n ( ”/ i a f n e u r o n C r e a t e ” )
2 n1 = s l i p o p ( )
3 s l i r u n ( ”/ i a f n e u r o n C r e a t e ” )
4 n2 = s l i p o p ( )
5 s l i p u s h ( n1 )
6 s l i p u s h ({ ” I e ” : 1 5 0 0 . 0} )
7 s l i r u n ( ” S e t S t a t u s ” )
8 s l i p u s h ( n1 )
9 s l i p u s h ( n2 )

10 s l i r u n ( ” Connect ” )
11 s l i p u s h ( 1 0 0 . 0 )
12 s l i r u n ( ” S i m u l a t e ” )

The neurons are created in line 1 and line 3 of the listing. Their identifiers are assigned
to the Python variables n1 and n2 in line 2 and 4. Line 5 and 6 push the arguments for the
SetStatus function to SLI, which is called in line 7. The neurons are connected, by first
pushing their global ids to the stack in SLI, and then calling the function Connect in line
8. Finally, the network is simulated for 100 ms by pushing the time in line 9 and calling the
function Simulate in line 10.
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Although this method allows to carry out a complete simulation in NEST from within the
Python interpreter, it is neither convenient, nor compact (twelve lines of code versus only five
lines using pure SLI). To remedy this situation, PyNEST contains a set of high-level functions
for common tasks.

3.3.2 The high-level API

SLI already provides all necessary commands to build and simulate a neural network. As
demonstrated above, calling the SLI functions directly, using the low-level API, is not very
convenient. However, we can create a more convenient Python interface to NEST by creating
wrapper functions that call the respective functions in SLI. The high-level API uses the func-
tions of the low-level API to provide Python versions of all important SLI commands. The
functions of the high-level API can then be used by the user’s simulation code. In general,
each function wrapper that is part of the high-level API stereotypically consists of three basic
parts:

1. Push the arguments onto the SLI stack with sli push().

2. Execute one or more SLI commands to perform the desired action inside of NEST using
sli run().

3. Retrieve the results from the stack via sli pop().

An example for a function that realizes this structure is the high-level implementation of
Create(). A simplified version of the function is shown in the following listing:

1 def C r e a t e ( model , n=1, params=None ) :
2 s l i p u s h ( n )
3 s l i r u n ( ”/%s exch C r e a t e ” % model )
4 l a s t i d = s l i p o p ( )
5 i d s = ra ng e ( l a s t i d − n + 1 , l a s t i d + 1)
6 i f params :
7 s l i p u s h ( params )
8 s l i r u n ( ”/ params Set ” )
9 s l i p u s h ( i d s )

10 s l i r u n ( ”{ params S e t S t a t u s } f o r a l l ” )
11 return i d s

Line 1 contains the function’s signature with the mandatory parameter model and the
optional parameters n, the number of nodes to create, and params, a parameter dictionary
to use for the new nodes. The number of nodes is pushed to the SLI stack in line 2. The
command that is executed in line 3 first creates a literal name from the given model name,
exchanges the two topmost elements on the stack as to create the right order of arguments,
and finally calls SLI’s Create function. Line 4 then retrieves the global id of the last created
node. Using this id, the full list of global ids is created in line 5. If a parameter dictionary is
given, it is used to set the parameters of the newly created nodes by calling SetStatus on
each of them (lines 7-10). Finally, the list of global ids is returned to the user in line 11.

Note that the call to SLI’s SetStatus function in line 10 could also be replaced by a
corresponding high-level function of PyNEST.
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If we now assume that we have high-level functions for the creation and connection of
nodes and for the simulation of the network, we can re-formulate the example from above as
follows:

1 n1 = C r e a t e ( ” i a f n e u r o n ” , params =[{” I e ” : 1 5 0 0 . 0} ] )
2 n2 = C r e a t e ( ” i a f n e u r o n ” )
3 Connect ( n1 , n2 )
4 S i m u l a t e ( 1 0 0 . 0 )

This formulation is much more compact than the one we had previously, and which only
used calls to the low-level API, but also more compact than the original formulation in SLI.

Array semantics of PyNEST

The implementation of the high-level function Create() shows a basic principle of the PyNEST
API: all functions that operate on node handles expect lists of global ids, although the under-
lying functions in SLI may only operate on single node ids. Further examples for this are the
functions Connect(), SetStatus(), GetStatus(), and many others. The reason for this
approach is that it allows to minimize the number of data transfers from Python to SLI and
thus to improve the performance of PyNEST.

The implementation of the SetStatus() function is a good example for the application
of this technique:

1 def S e t S t a t u s ( nodes , params ) :
2 s l i p u s h ( nodes )
3 s l i p u s h ( params )
4 i f params == t y p e s . DictType :
5 s l i r u n ( ”/ params Set ” )
6 s l i r u n ( ”{ params S e t S t a t u s } f o r a l l ” )
7 e l s e :
8 s l i r u n ( ’ 2 a r r a y s t o r e ’ )
9 s l i r u n ( ’ Transpose { a r r a y l o a d pop S e t S t a t u s } f o r a l l ’ )

Line 1 contains the function’s signature. The argument nodes is a list of one and more
global ids as returned by Create(), while params can be either a single parameter dictionary,
or a list that contains one parameter dictionary for each node and thus has to be the same
size as nodes. The lines 2 and 3 push the arguments to SLI. Line 4 checks if params is of
type DictType, in which case the dictionary is assigned to the SLI variable params and set
for each of the given nodes. Else, we assume params to be a list and create an array of the
two arguments nodes and params in SLI using the function 2 arraystore in line 8. Line
9 first transposes the array and then calls the procedure {arrayload pop SetStatus} for
each element of the new array. The function arrayload in SLI resolves an array and puts the
elements onto the stack. It then puts the number of elements onto the stack. This number is
discarded by pop, which removes the topmost element of the stack. The function SetStatus

takes the global id and the dictionary from the stack and sets the properties of the node.

Compared to the näıve design, this version has a better performance. The reason is that
it only needs to push the parameter dictionary once, where the näıve version needs to push it
n times for n nodes. Even in the case of n different dictionaries, the expected performance is
better, as less function calls are involved.
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The Connect() function is implemented in a similar way. The PyNEST version allows to
make arbitrarily many one-to-one connections with a single function call, where SLI’s basic
Connect routine only can connect two nodes with each other:

1 group1 = C r e a t e ( ” i a f n e u r o n ” , 10)
2 group2 = C r e a t e ( ” i a f n e u r o n ” , 10)
3 Connect ( group1 , group2 )

Extending the functionality of SLI

The availability of powerful functions for plotting in Python through Matplotlib (http://
matplotlib.sourceforge.net/) allows us to extend the functionality of PyNEST over that
of SLI. PyNEST contains two modules for plotting the data that results from the simulation:
the modules voltage trace can be used to plot membrane potential traces of arbitrarily many
neurons, raster plot allows to plot spike data with or without a temporal histogram. The
following listing contains an example usage of the voltage trace module.

1 from n e s t import ∗
2 from n e s t import v o l t a g e t r a c e as p l o t
3 n = C r e a t e ( ” i a f n e u r o n ” , params={” I e ” : 5 0 0 . 0} )
4 vm = C r e a t e ( ” v o l t m e t e r ” , params={” w i t h g i d ” : True })
5 Connect (vm , n )
6 S i m u l a t e ( 1 0 0 . 0 )
7 p l o t . f r o m d e v i c e (vm)

Line 1 imports all functions from the NEST high-level API to the global namespace. The
voltage trace module is imported under the name plot in line 2. The simulated network
consists of a single neuron with an unspecific background current of 500 pA (created in line
3) and a voltmeter to measure the membrane potential of the neuron (created in line 4).
Line 5 connects the device to the neuron. In line 6, the network is simulated for 100 ms. The
data collected by the voltmeter is plotted in line 7. The result of the simulation is shown in
Figure 3.2:
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Figure 3.2: Example of plotting with the voltage trace module: The blue line shows the
membrane potential of a single neuron stimulated by a direct current input with 500 pA.

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
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3.4 Data conversion

PyNEST needs efficient routines for the data conversion from Python to SLI, and from SLI to
Python. This conversion is possible, because each data type in SLI has a corresponding data
type in Python. However, the data types for both interpreters are implemented in different
ways and in different programming languages (Python uses C, while SLI uses C++), so we
need different approaches for the two directions of the conversion.

The data conversion of the prototype implementation suffered from severe performance
problems and introduced a hard dependency on Python in the NEST source code (see Sec-
tion 3.2.1). Our new design of the data conversion routines effectively solves both problems.

3.4.1 From Python to SLI

The function sli push() has to convert a given Python object to the corresponding SLI data
type. In general, all Python objects are available in C as pointers to objects of type PyObject.
To distinguish between the types, the C-API of Python provides type-check functions to test if
a Python object is of a specific type. These functions return true if the object is of the queried
type, and false otherwise. Based on these functions, we designed the function PyObject -

ToSLIDatum() for the conversion of a Python object PyObj to the corresponding SLI data
type. It first determines the type of the Python object and then instantiates a new SLI datum
of the correct type, and with the correct value. This is shown in the following listing using the
example of the conversion of integers and booleans:

1 i f ( P y I n t C h e c k ( PyObj ) )
2 {
3 i f ( PyObj == Py True )
4 return new BoolDatum ( true ) ;
5 e l s e i f ( PyObj == P y F a l s e )
6 return new BoolDatum ( f a l s e ) ;
7 e l s e
8 return new IntegerDatum ( PyInt AsLong ( PyObj ) ) ;
9 }

The if statement in line 1 checks if the given Python object PyObj is of type integer.
As booleans in Python are also implemented as integer values, we first check if PyObj has
the value Py True or Py False in line 3 and 5, in which case we return a BoolDatum with
the corresponding value. For ordinary integer numbers, we return an IntegerDatum with the
value of the Python object in line 8.

Similar conversions are available for the conversion of floating point numbers and strings.
The conversion of the compound data types dictionary, list, and tuple are carried out element-
wise by using the function PyObj ToDatum recursively.

Conversion of NumPy arrays

NumPy (http://numpy.scipy.org/) is an extension module for Python, which provides
efficient multi-dimensional data types for representing arrays and matrices in Python. As most
of SciPy’s routines for scientific computing are based on NumPy, it is important to support
these data types in PyNEST.

http://numpy.scipy.org/
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When the PyNEST prototype was written, SLI did not have any efficient numeric array data
types. Because of this, NumPy arrays had to be translated element-wise to the SLI data type
ArrayDatum, which is implemented as a linked list of tokens. However, this was very inefficient
and lead to the development of PyDatum for SLI, which was a wrapper around NumPy arrays
that could be directly transferred to SLI. The major drawback of this approach was that SLI
itself was not able to operate on these data types, which hampered the interaction between
the two interpreters.

The design of an efficient conversion for NumPy array required the addition of two new
data types for SLI: IntVectorDatum and DoubleVectorDatum. These are implemented as
wrappers around C++ vectors of the corresponding types and are thus very efficient compared
to the linked lists that are the basis for the ArrayDatum data type. Using the new data types
allows to implement the conversion of the NumPy array types by directly copying the memory
content of the NumPy data type to that of the corresponding SLI vector data type.

NumPy arrays support a technique called slicing, which allows to efficiently define subsets
of arrays without modifying the internal representation of the data in memory. An examples
for the usage of this technique is given in the following listing:

1 a = numpy . a r r a y ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] )
2 p r i n t a [ : 5 ]
3 numpy . a r r a y ( [ 1 , 2 , 3 , 4 , 5 ]

Instead of copying the requested subset of the data, slicing only changes the indexing of
the NumPy array internally, and, although the array looks as if only the selected elements
were present from within Python, the complete data is visible if the array is accessed from the
C-API of NumPy.

In order to support “sliced” arrays in addition to “normal” NumPy arrays in PyNEST, we
first have to check if the array is a sliced array or not. If it is, we have to move through it with
the correct step size (given by array->strides[0] in the C-API of NumPy) and copy the
elements one by one to the SLI vector of the corresponding type. Otherwise, we can proceed
as explained above.

To improve the integration of the types IntVectorDatum and DoubleVectorDatum in
SLI, we have modified all synapse and neuron models to accept these types in addition to
the old list-based types. However, most of SLI’s mathematical functions still expect the old
ArrayDatum, and a conversion is needed.

3.4.2 From SLI to Python

The function sli pop() has to convert a SLI datum to a Python object. This conversion
has a more elegant implementation than the conversion from Python to SLI, because it can
exploit the fact that each SLI datum knows its own type. A SLI datum thus can convert itself
to a Python object of the right type. However, this would introduce a dependency on Python
in NEST and violate the requirement of independence stated in Section 3.2.2. To avoid this
dependency, we use the acyclic visitor pattern (Alexandrescu, 2001).

The data conversion framework consists of two parts: first, a Python-unspecific part, which
is implemented in the source code of NEST, and second, a Python-specific part, implemented
in the source code of PyNEST.
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Python-unspecific classes and functions

All data types of SLI are derived from a common base class, called Datum. For the conversion
of SLI datums to Python objects, this class was extended by the function use converter(),
which takes a reference to a DatumConverter and is inherited by each of the derived data
types. The implementation of the function use converter() is shown in the following listing:

1 void Datum : : u s e c o n v e r t e r ( DatumConverter &c o n v e r t e r )
2 {
3 c o n v e r t e r . c o n v e r t m e (∗ t h i s ) ;
4 }

If the function is called on one of the derived data types, it calls the convert me() function
of converter that matches its own type with itself as an argument.

The class DatumConverter serves as the base class for the implementation of a concrete
type converter. It contains one pure virtual convert me(T&) function for each SLI data type
T. The following listing shows this for some of the types in the original implementation:

1 c l a s s DatumConverter
2 {
3 p u b l i c :
4 v i r t u a l void c o n v e r t m e ( DoubleDatum&)=0;
5 v i r t u a l void c o n v e r t m e ( IntegerDatum &)=0;
6 v i r t u a l void c o n v e r t m e ( BoolDatum&)=0;
7 // c o n v e r t m e ( ) f u n c t i o n s f o r a l l o t h e r data t y p e s o f SLI
8 }

The functions and classes for the conversion of SLI types that were described until now, are
not specific for a conversion to Python objects. They can be used for any type conversion from
a SLI data type to some arbitrary type not known to NEST. The following section describes
the part of the conversion framework that is Python-specific and resides in the source code of
PyNEST.

Python-specific classes and functions

The Python-specific part of the conversion is implemented in DatumToPythonConverter, a
class which is derived from the base class DatumConverter. It has only a single data member,
called py object, to store the result of the conversion. In addition it contains the function
convert(), which converts a SLI datum d to a corresponding Python object by calling d’s
use converter() function with itself as argument. The implementation of convert() is
shown in the following listing:

1 PyObject ∗ DatumToPythonConverter : : c o n v e r t ( Datum &d )
2 {
3 d . u s e c o n v e r t e r (∗ t h i s ) ;
4 return p y o b j e c t ;
5 }

To carry out the conversion of a concrete SLI data type, the DatumToPythonConverter

contains implementations of the convert me() functions for all supported SLI data types.
These implementations store the result of the conversion in the variable py object, which is
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returned by the convert() function. The following listing illustrates the conversion with the
example of SLI’s data type for floating point numbers, DoubleDatum:

1 void DatumToPythonConverter : : c o n v e r t m e ( DoubleDatum &d )
2 {
3 p y o b j e c t = PyFloat FromDouble ( d . g e t ( ) ) ;
4 }

To convert a SLI data type d to the corresponding Python object, sli pop() creates a
new instance of the class DatumToPythonConverter and calls its convert() function with d

as argument. The result of the conversion is returned to the user. A complete example for the
order of events during the conversion of a DoubleDatum to the corresponding Python object
is shown in Figure 3.3.

Figure 3.3: Conversion of a DoubleDatum to a Python object: For the conversion
of a SLI datum d, sli pop() creates an instance of DatumToPythonConverter. It
then calls the DatumToPythonConverter’s convert() function, which passes itself as
a visitor to the use converter() function of d. Datum::use converter() calls the
DatumToPythonConverter’s convert me() function that matches d’s type. convert me()

creates a new Python object from the data contained in d. The new Python object is returned
to sli pop().

3.5 Error handling

NEST uses two different error handling strategies: assertions to check the correctness of state
variables in the program flow during execution (implemented using the C macro assert()),
and exceptions to catch user errors, like wrong arguments to SLI functions and the use of
invalid object identifiers. The user errors have to be translated into Python errors, as to
inform the user of PyNEST about problems in the simulation description.
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Exceptions are generated at the location where an error is detected. Upon an exception,
the normal execution of the function is aborted and the exception is propagated up in the
calling hierarchy until an appropriate statement catches and handles it. If no such statement
is in place, the general error handler of SLI catches it and signals the error to the user.

SLI commands executed from within Python via sli run() are run in a protected en-
vironment that uses SLI’s mechanisms to catch errors in order to create Python exceptions
in the case of errors. The protected environment consists of two parts: First, the function
sli run() in the high-level API of PyNEST, and second, the SLI function runprotected.
The implementation of sli run() is shown in the following listing:

1 def s l i r u n (cmd ) :
2 k e r n e l s l i r u n ( ”{%s } r u n p r o t e c t e d ” % cmd)
3 i f not s l i p o p ( ) :
4 errname = s l i p o p ( )
5 message = s l i p o p ( )
6 cmdname = s l i p o p ( )
7 r a i s e NESTError ( errname + ” i n ” + cmdname + message )

Line 1 contains the function’s signature. In line 2, a SLI procedure is created from the given
command cmd and executed by runprotected using the function kernel sli run, which is
the implementation of the low-level API and provides direct access to SLI’s interpreter. The
function runprotected either returns True if the command was executed without errors, or
False otherwise. If an error occurred, runprotected puts the name of the error, the name
of the failed command and the error message on the stack, which is retrieved by Python in
line 4 to 6 and converted to a Python exception of type NESTError in line 7.

The function runprotected provides a mechanism for the protected execution of SLI
commands and to catch errors. Its implementation is shown in the following listing:

1 / r u n p r o t e c t e d
2 {
3 stopped dup
4 {
5 e r r o r d i c t / n e w e r r o r get
6 {
7 e r r o r d i c t / message known
8 { ( : ) e r r o r d i c t / message get j o i n e r r o r d i c t / message undef}
9 { ( ) } i f e l s e

10 e r r o r d i c t / e r ro rn am e get cvs
11 3 2 r o l l
12 e r r o r d i c t / n e w e r r o r f a l s e put
13 }
14 {
15 ( S o f t w a r e I n t e r r u p t )
16 }
17 i f e l s e
18 } i f
19 not
20 } def

Line 3 executes the given SLI procedure in a stopped context (PostScript; Adobe Systems
Inc., 1999). In case of an error, stopped leaves the name of the failed command on the stack
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and returns true, and false otherwise. The return value is duplicated using the command dup

to be returned to Python later. If an error occurred, runprotected checks if the newerror

flag in the errordict is set in line 5. If yes, the error is caused by a failed command and the
information about the error is extracted from the errordict in line 7 to 12. Otherwise, the
error is caused by a software interrupt. Finally, the return value of stopped, which is on top
of the stack, is inverted and used by sli run() to check if an error occurred or not.

Using this error handling strategy allows to leave error handling to SLI. The functions of
PyNEST’s high-level API do not have to check their arguments and can thus be written in
a very compact form. An additional advantage of this strategy is that the error messages of
pure NEST and PyNEST are consistent without requiring additional effort by the developers.

3.6 Installation and build process

PyNEST uses a build process based on the distutils package (http://docs.python.
org/distutils/). This package allows to build and install extension modules for Python
on a large variety of platforms. NEST and SLI, on the other side, use the GNU Build
System (http://www.gnu.org/software/hello/manual/automake/GNU-Build-System.
html) for the build and installation process.

To integrate both systems, we designed a custom setup.py script, which is processed
by the build mechanism of NEST to set the correct paths (as set during the configuration
of NEST), compiler flags, library options and such. This build system guarantees a tight
integration of PyNEST with NEST, while at the same time allowing to disable PyNEST on
machines where Python is not available or when it is not needed.

3.6.1 Support for NEST extension modules

NEST can be extended by dynamically linked modules, which can add new neuron, device, and
synapse models to the simulation engine, and new functions to SLI. To make the functionality
of these modules also available in PyNEST, they have to provide function wrappers for their
functions.

The installation procedure of NEST has been modified such that the content of the mod-
ule’s sub-directory pynest is installed as a sub-module to PyNEST. This means that modules
in NEST can be used naturally as sub-modules in PyNEST. For example, to use the topol-
ogy module from within PyNEST, it suffices to execute the command from nest import

topology in Python.

3.7 Unit tests

NEST itself provides a extensive suite of unit tests in order to guarantee the absence of errors
in its implementation (Eppler et al., 2009). This is an important prerequisite for scientific
software, and allows the researchers that use NEST to rely on the correctness of its algorithms.
During the design of PyNEST, we used simple unit tests for the high-level API to test if the
results are the same as that obtained with the underlying functions in SLI and NEST. The
testsuite of PyNEST is based on the unittest module and is automatically run by NEST’s
testsuite.

http://docs.python.org/distutils/
http://docs.python.org/distutils/
http://www.gnu.org/software/hello/manual/automake/GNU-Build-System.html
http://www.gnu.org/software/hello/manual/automake/GNU-Build-System.html
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3.8 Performance

One of the critical problems in the prototype of PyNEST was its performance. During the
re-design process for the new version of PyNEST, we found that the overhead for function
calls can be neglected. Therefore we do not need full function wrappers in the low-level API
and the functions sli push(), sli pop(), and sli run() are sufficient. Our benchmarks
showed that the real bottleneck is the data conversion.

Partially, this problem could be solved by the two new data types IntVectorDatum and
DoubleVectorDatum for SLI that allow the efficient translation of NumPy arrays into the
corresponding vector type of SLI and vice versa by abandoning the element-wise conversion of
array elements, which is only needed for lists, tuples, and dictionaries.

Another important prerequisite to achieve good performance in the PyNEST interface is to
minimize the number of data conversions. This can be achieved by using collective operations
that push data only once to the stack and use SLI operations to work with it. For an illustration
of the technique, see the implementation of Create() and SetStatus() in Section 3.3.2.
The magnitude of the saving is shown by the examples in the following two listings that both
add up a sequence of numbers in SLI. The first creates the sequence of numbers in Python,
pushes them to SLI one after the other and lets SLI add them. Executing it takes approximately
15 seconds on a laptop with an Intel Core Duo processor at 1.83 GHz.

1 s l i p u s h ( 0 )
2 f o r i i n ra ng e ( 1 , 1 0 0 0 0 1 ) :
3 s l i p u s h ( i )
4 s l i r u n ( ” add ” )

The second version computes the same result, but instead of creating the sequence in
Python, it is created in SLI:

1 s l i r u n ( ”0 1 1 100000 { add } f o r ” )

Although Python loops are about twice as fast as SLI loops, this version takes only 0.6
seconds, because of the reduced number of data conversions and, to a minor extent, the
repeated parsing of the command string and the larger number of function calls in the first
version.

3.9 Summary

We have shown an alternative approach for creating Python bindings for an application by
using a generic interpreter-interpreter interaction interface instead of directly wrapping of the
underlying functions and data structures. The complete API reference of PyNEST is contained
in Eppler et al. (2009).

One of the design goals for PyNEST was to keep NEST independent of Python in order
to allow the user to select between the two user interfaces SLI and PyNEST, and to keep the
fate of NEST independent of the fate of Python. This goal was achieved, by providing an easy
way to disable PyNEST during the configuration of NEST.

The design of the data conversion routines explained above does not introduce any de-
pendencies on Python in the NEST code base. Moreover, it provides a general framework to
implement conversions of SLI data types to arbitrary types that NEST does not know. Being
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based on efficient arrays, the performance problems of the conversion from Python to SLI in
the prototype could be solved.

Using SLI as the basis for the new user interface allows to run code that has already
been written in the language of the old user interface seamlessly from the new user interface.
Moreover, the library components of NEST and SLI can still be used from the new interface.
SLI’ ability to handle errors in the user code relieves the author of high-level functions from the
necessity to check the arguments of functions, because they are checked by SLI and reported
to the user of PyNEST without additional effort.

The integration of the testsuites of both interfaces improves the trust of users into the
correctness of both the functions in SLI and the implementation of the high-level interface of
PyNEST. This is an important prerequisite for the correctness of the scientific results obtained
with NEST.

With the separation of PyNEST into a stable low-level API and a flexible high-level API
we reduce the effort for the maintenance of the binary interface to the minimum. At the
same time, it is simple to extend the high-level API by new functions and by new modules for
plotting, data analysis, and for the support of extension modules for NEST.

Our choice of Python as programming language for the new user interface of NEST is
supported by the fact that a growing number of other neuroscience laboratories are using
Python as well (Kötter et al., 2009). Moreover, many researchers in the field are developing
tools for stimulus generation and data analysis in this language, and we can benefit from the
growing ecosystem that is only just starting to grow around Python.

One example for the synergy achieved by this development is the common interface for
different simulators (PyNN), which is explained in the next chapter.
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Chapter 4

A common interface for different
simulators

In recent years, several simulators for biological neural networks have been developed inde-
pendently by a number of neuroscience laboratories to address their specific research interests.
Each of these simulators is specialized on a certain problem domain, such as spiking neuron and
network models (Gewaltig & Diesmann, 2007; Pecevski et al., 2009), detailed compartmen-
tal models with rich morphology (Hines & Carnevale, 1997; Bower & Beeman, 1997; Ray &
Bhalla, 2008), or reaction-diffusion models (Kerr et al., 2008; Wils & De Schutter, 2009). The
availability of multiple simulators has several advantages compared to a software monoculture:

• As each simulator is specialized on a different problem domain, it is possible to chose
the most appropriate simulator for a given problem.

• Simulation results can be compared with those obtained with other simulators. This
allows a validation of models, which results in a greater confidence in the simulation
results.

• The implementations of the simulators themselves can be compared in order to cross-
validate their correctness.

• The competition between developers leads to faster progress in the field as more ideas
are developed and tested in parallel. The increasing number of publications in the field
of neuroinformatics is clear evidence for this.

However, the diversity also leads to problems, as each simulator uses its own programming
or configuration language (cf. Section 3.1). The major problem is related to the communication
between researchers using different simulators, in particular the exchange of formal model
descriptions, which has hindered the independent reproduction of results and the re-use of
model components developed by others for a long time. Considerable time has been spent
porting models from one simulator to another.

In addition, the diversity in the simulator landscape makes it more difficult to understand
and compare model written descriptions for different simulators and by different people. This
complicates the independent reproduction of results by others and to build on their work, which
is an important prerequisite for scientific progress and for the credibility of the results.
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4.1 PyNN: An abstraction layer for simulators

One consequence of the large-scale neuroscience projects introduced in Chapter 1 is the
need to use multiple simulators and tools. The reason for this is that only large system-
level models of the brain allow to understand brain function as a whole. One example is
the EU project FACETS (Fast Analog Computing with Emergent Transient States; http:

//facets.kip.uni-heidelberg.de/), in which a variety of simulators have been used.
To ease the cooperation between the different working groups, we developed a common
interface to the different simulators (PyNN; Davison et al., 2008, available from http:

//neuralensemble.org/trac/PyNN/), which allows the same model description to be run
on all supported simulators as well as on the neural VLSI hardware created in the project.

As explained in Chapter 3, the Python programming language is becoming the de-facto
standard in computational neuroscience and is used as a general purpose language in the field of
neuroinformatics. Most of the current simulators now support Python, either as their primary
interface or as an alternative in addition to their original interface (Kötter et al., 2009). This
provides an unprecedented opportunity to define a common interface to multiple simulators
using Python. PyNN (pronounced “pine”) is both a specification of such a common simulator
interface and an implementation of the interface for several simulators.

With PyNN it is possible to write a simulation script once and run it without modification
on any supported simulator. Thus, we keep the advantages of having multiple simulators (for
cross-validation, etc.) but lower the translation barrier. PyNN is now in world-wide use and
plays an important role in the INCF program “Multi-scale modeling”.

4.2 The architecture of PyNN

User simulation code

PyNN low-level interface PyNN high-level interface

Python interface

PyNN common interface

Code generation

Simulator-specific API Simulator-specific code

S
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Figure 4.1: The architecture of PyNN: The user’s simulation code can use the high-level and/or
the low-level interface of PyNN. They both use the common interface of PyNN, which contains
a simulator-specific part (backend) for the simulators that provide a Python interface. The
gray parts showing code generation to generate native code for the simulator-specific API of
the simulator are planned, but not yet implemented.

http://facets.kip.uni-heidelberg.de/
http://facets.kip.uni-heidelberg.de/
http://neuralensemble.org/trac/PyNN/
http://neuralensemble.org/trac/PyNN/
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PyNN provides two APIs for the simulation of spiking networks. The low-level interface is
implemented in a procedural manner and provides functions to create, connect, modify, and
record from single neurons. This interface can be used for porting a simulation script from
a simulator-specific language to PyNN, as most of the simulators use a procedural approach.
The high-level interface is object-oriented and provides two classes of objects (Populations
and Projections) to build network models using the terms and concepts from neurobiology.
The elements within Populations can be accessed individually and the functions of the low-
level interface can be applied to them. This allows a very flexible combination of the two
interfaces in a single simulation script. The basic architecture of PyNN is shown in Figure 4.1.

To support simulators with a Python interface, PyNN uses simulator-specific backends for
implementing the simulator-nonspecific part of its interface. In the simplest case, the backend
only consists of conversion tables for the translation of function names and physical units to
PyNN’ standard names and units. This approach works well if the concepts of the simulator
are close to the ones in PyNN. In other cases, however, the translation to the simulator-specific
interface is more complicated, because the concepts of the simulators differ considerably from
the ones in PyNN. For simulators without a Python interface, PyNN supports the possibility
to create a model description in the native language of the simulator.

As of writing, the simulators NEURON, NEST, PCSIM, Brian, and the neuromorphic VLSI
hardware of the FACETS project have fully supported backends in PyNN. Support for MOOSE
(a successor to GENESIS 2) is currently under development.

4.2.1 Simulator-specific backends

The backends for PyNN basically consist of two parts: first a set of functions to initialize
the simulator, to run the simulation, and the classes Populations and Projections of
the high-level API. These classes allow the formulation of model descriptions in terms of
neuroscientific concepts, which makes PyNN accessible to neuroscientists without a computer
science background. Second, Python modules for the different parts of the PyNN API:

cells contains a mapping of PyNN standard cell names to simulator specific names and trans-
lations of PyNN parameter names to the parameter names used in the simulator. The
cell module is used by the high-level and the low-level API.

connectors contains Connector classes that define the parameters of specific connectivity
patterns (e.g. all-to-all, small world, or distance dependent). These Connectors are
used by the Projection class of the high-level API.

electrodes contains the classes to simulate current injections into neurons, and methods to
connect them to neurons. The electrodes correspond to the electrodes used in real
neuroscientific experiments.

recording contains classes and methods for managing recordings of spikes, potentials, etc.
and maps the recording API of PyNN to the simulator-specific way of reading out model
variables.

simulator contains the definition of the low-level API specific to the simulator. This includes
the state of the simulator as well as functions to create and access individual cells in the
low-level API.
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synapses contains the mapping of PyNN standard synapse names to the synapses of the
simulator and conversion tables for the translation of parameter names. This module is
to synapses, what the module cells is to neuron models.

4.2.2 Unified data format

Each of the different simulators uses a specific data format for the output of recorded data.
In large-scale projects like FACETS, this poses an additional problem, as this leads to the use
of different tools for the analysis of data depending on the simulator used, or the tools have
to be adapted to provide import filters to read all of the data formats.

To ease this problem, PyNN supports a common output format for spikes, conductances
and membrane potentials that is created after the simulation by reading the output files of
the simulator and rewriting them in the common format. This common format also bridges
the gap between real neuroscientific experiments and simulations by allowing to use the same
tools for data analysis.

4.2.3 Random number generators

Many neuroscientific studies rely on random connectivity for some parts of the network, or
on random input to emulate input from an external population that is not modeled explicitly.
Random number generators (RNG ) thus are an important part of a common interface for
different simulators. In order to guarantee reproducible results even if different simulators
are used, PyNN provides RNGs that can be used for the setup of random connections, or to
initialize random spike trains for stimulating the network.

However, drawing random numbers in Python and transferring them to the simulator is
often not very efficient. Moreover, most simulators support random connectivity and random
input as a built-in feature. Therefore, PyNN provides a flag to switch between PyNN’s RNG,
which is slow, but allows to obtain reproducible results, and the one of the simulator, which is
fast, but leads to non-reproducible results.

4.3 Benefits of using PyNN

PyNN aims to increase the productivity of researchers in the area of neuronal network modeling
in two ways:

1. By providing the capability to model at a high level of abstraction using concepts com-
monly used in neurobiology, while still allowing access to low-level details of the sim-
ulation where necessary. This allows to develop a simulation from an idea faster than
by only using low-level concepts such as neurons and single connections. It also im-
proves the maintainability of the simulation code, as PyNN often allows a more compact
formulation of ideas.

2. By promoting code sharing and re-use across simulator communities, PyNN simplifies
the process of porting models between simulators, which helps to validate the results of
others and build on their work.
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PyNN changes the process of porting a model from one simulator to another from an
all-or-nothing task, in which the validity of the translated model can only be tested when
the entire translation is complete, to an incremental approach, in which the native code is
gradually replaced by simulator-independent code. At each stage, the hybrid code remains
runnable, and so it is straightforward to verify that the model behavior has not been changed
by the translation process.

By providing support for populations and projections directly in the language interface,
PyNN allows to formulate simulation descriptions in terms of neuroscientific principles. This
is in contrast to many of the simulator-specific APIs, which require to formulate the studies in
computer scientific terms like objects, classes, and control structures.

Through the multitude of third-party modules for the Python programming language, PyNN
can directly benefit rapidly from the straightforward integration with other components such as
graphical interfaces, databases, stimulus generation, and data visualization and analysis tools.

4.4 Performance

In general, PyNN follows the philosophy of maximizing compatibility and reproducibility be-
tween simulators. This is always the default, but it is usually possible to exchange reproducibil-
ity for performance by setting a flag. One example is the compatible output flag, which
activates or deactivates re-writing the output of the simulator into the unified data format (see
Section 4.2.2). Another example is the parallel safe flag, which is used for turning on or
off PyNN’s random number generators in a distributed setup.

It is clear that adding multiple layers of user interfaces on top of each other will slow down
the network setup compared to the native interfaces of the simulators. However, the improved
readability and the possibility to write simulation descriptions in less time still justifies the
performance penalty. Moreover, this penalty can be kept small by using the high-level functions
of the simulators for creating nodes and connections in the simulator-specific backends of
PyNN.

4.5 Community driven development

It is important to note that the development of PyNN is actively supported by its users and
the respective simulator developers. This means that PyNN has become a central point for
the exchange of concepts and techniques for simulator development in general.

Driven by the FACETS project, these collaborative efforts lead to the foundation of the
open-source sharing platform Neural Ensemble (http://neuralensemble.org/), which plays
an important role in the joint efforts to create an open-source tool chain for computational
neuroscience. The founders of the platform organize an annual event (CodeJam; https://
neuralensemble.org/meetings.html, where developers of tools and simulators share their
knowledge and experience and present new developments in their domain. The newly emerging
culture of sharing and re-use lead to the development of tools for data analysis (NeuroTools;
http://neuralensemble.org/trac/NeuroTools/) that are actively maintained by the user
community.

http://neuralensemble.org/
https://neuralensemble.org/meetings.html
https://neuralensemble.org/meetings.html
http://neuralensemble.org/trac/NeuroTools/
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4.6 Summary

PyNN allows to write model descriptions in a simulator-independent way by using backends for
the simulators that support Python and by allowing code generation for the native simulator
interfaces where no Python interface is available.

The use of PyNN eases the task of porting models from one simulator to another and
improves the communication between the users of different simulators and from different lab-
oratories.

Another advantage of PyNN over the simulator-specific APIs is its support for NeuroML
(Crook & Howell, 2007; Crook et al., 2007), a standard for model descriptions based on XML.
Using PyNN, it is already possible to use models, which are written in NeuroML, even in
simulators that do not support it currently.

During the work for this thesis, we contributed to the overall design of the PyNN API.
NEST was one of the first simulators to be supported by PyNN, and the two projects influenced
each other mutually to make them more useful for the neuroscientific day-to-day work.
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Chapter 5

Communication between different
simulators

Throughout the history of neuroscience, the view of the brain and the recognition of its relevant
parts has changed many times. This refinement was based on new insights that became possible
either due to advancements in technology, or because of a paradigm shift. On the technical
side this includes aids such as optical microscopy or functional magnetic resonance tomography
(fMRI ) to enhance the visibility of certain structures, but also new chemical methods, like dyes
to selectively stain certain components of brain tissue.

Today, the neuron doctrine is a generally accepted theory. It states that the nervous system
(just like all other living tissue) is made up of single nerve cells (Barlow, 1972; Shepherd, 1991).
These cells (neurons) communicate by means of electric pulses (spikes) mediated by the flow
of ions, over connections that are called synapses. Ultimately, this communication brings
about the behavior of an animal on all levels, from simple reflexes to complex cognitive tasks
such as reasoning and consciousness. Sensory organs like the eyes, or the heat and pressure
sensors in the skin, encode their measurements of physical quantities in spike trains that are
communicated over nerve tracts to the brain. The brain processes these inputs and finally
generates a behavior, again by using spike trains, which are sent to the muscles and to the
organs of the body of the animal.

The brain exhibits interesting dynamics and phenomenons on a large range of spatial and
temporal levels. In neuroscience, a multitude of methods is used to characterize these levels,
and to measure their electrical and chemical properties. The resolution of the different meth-
ods, however, varies considerably: electroencephalography (EEG ) for example has a spatial
resolution of several centimeters. This means that the activity of many millions of neurons is
seen as one accumulated signal with this method, whereas other methods such as electrophys-
iology allow to measure the activity of individual neurons with high precision.

To understand the function of the brain, it is important to understand the dynamics on all
levels. However, the majority of researchers in neurobiology are working only on one specific
level. The main reason for this is that most of the methods used for the investigation are
restricted to a specific level of the organization, and that it is thus not possible to investigate
all levels at once. Working in this way, neuroscientists accumulated a considerable amount of
knowledge about the working principles and the mechanisms that underlie the function of the
different levels over the past years.
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More and more it becomes clear that a single level of description is not sufficient to
explain the function of the brain as a whole. The brain has many different subsystems that
are organized in hierarchies. The hierarchies interact with each other in order to bring about
what is often referred to as “the function of the brain”. However, the notion of function is
over-simplified as each level has its own task and therefore its own function that adds its share
to the function of the entire system.

As long as the knowledge about the different levels is not embedded into the context of
the whole system, and by looking at the single achievements alone, it is hardly possible to
get an overall picture of the working principles in the brain, and to understand how complex
phenomenas like consciousness and mind come about.

5.1 Levels of organization in the brain

The brain is hierarchically organized on many different levels and on many different spatial
scales (see Figure 5.1). The different levels can be distinguished by the elements that play
a role in their function. For example the highest of them is given by the behavioral level of
cognitive functions that are created by the activity of the complete central nervous system
(CNS). Many of the lower levels cannot be defined as precisely, as not all building blocks and
mechanisms are fully known yet. To understand the function of the brain as a whole, it is
necessary to integrate the knowledge about the functions from all of the different levels.

(A)

CNS1 m

Systems10 cm

Maps1 cm

Networks1 mm

Neurons100 µm

Synapses1 µm

Molecules1 Å

(B)

Figure 5.1: Different levels of organization in the nervous system: (A) The spatial scales
at which anatomical organizations can be identified varies over many orders of magnitude
(redrawn after Churchland & Sejnowski, 1988). (B) Levels of organization in the nervous
system (taken from Shepherd, 1988).
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Not all parts and functions of the nervous system are accessible easily to neurobiological
experiments. The behavior of an organism for example is visible to an observer in the environ-
ment. Likewise, the general organization of pathways in the early sensory and motor systems
can be identified in anatomical studies without the need for an overly elaborate laboratory
setup. Therefore it is not surprising that a lot of knowledge is available for these specific levels
of detail. On the other side, relatively little is known about the properties at the network
level in comparison with the detailed knowledge we have of synapses. The reason for this is
that synapses are distinct entities that can be characterized by their bio-chemical properties,
while networks are often highly recurrent, and their function cannot be tested easily in an
experimental setup due to the strong interactions in the system.

Even today, neuroscientists argue about the right level of description that has to be used in
order to understand the brain. Moreover, a clear separation of the levels is not always possible
due to the strong interactions between them. However, it is also clear that brain function
emerges from this interaction, and that information on all levels of the hierarchy provides
valuable knowledge.

5.2 Multi-scale models of the brain

Similar to the current style of research in classical neuroscience, the models produced by
computational neuroscience often stay on one specific level of detail. The reason for this is
that models are often created to reproduce and understand one certain study from classical
neurobiology, or the function of one specific subsystem. A selection of the different types of
models that are used currently is contained in the following list (see also Section 1.4.2):

• Hypothesis about the function of whole populations of cells and about whole brain areas
can be tested using population or field models that do not explicitly contain models of
single neurons.

• Effects on the network level are examined in large networks consisting of point neu-
ron models, or of compartmental neuron models that are based on three dimensional
reconstructions of real neurons.

• Signal transduction in single cells is investigated in detailed compartmental models of
whole neurons or patches of cell membrane that are based on detailed electrophysiological
measurements.

• Chemical processes and the molecular basis for the function of cells and synapses are
studied using reaction-diffusion models, which allow to understand the interactions of
molecules and ions in the cell and at the cell’s membrane.

The variety of the models in above list makes clear that we depend on all these models in
order to understand and describe the different levels appropriately. However, the models on
the different scales are not necessarily unrelated. They often describe the same aspect of the
system using a different level of abstraction in order to permit an easier analysis or simulation
of the system. Furthermore it is not even possible to develop a single model that covers all
levels with the same precision, because too much detailed knowledge on the system would be
necessary to do so.
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Figure 5.2: Sketch showing the relation of different modeling scales (redrawn and extended
from Dudani et al., 2009): The coarsest end of the scale is given by population models. On
a finer level, populations can be modeled by networks of point neurons. Point neuron models
are abstractions of detailed compartmental models of neurons and membranes. The chemical
reactions in the cell or at the cell’s membrane can be modeled using reaction-diffusion systems.
The scale extends in both directions.

Figure 5.2 shows the relation of the different models explained in the list above. Each of
the elements in one of the higher levels can be replaced or refined by a model of the lower level.
However, the the variety of models is also reflected in the development of simulators. Different
simulators exist and are also specialized on a specific level of detail. The main reason for this
is complexity: it is hardly possible to develop and maintain a simulator that works reliably
on all levels of detail, and provides all researchers with the required features for their work.
In addition, the multitude of simulators has a lot of advantages for the exploration of new
algorithms and for the validation of simulator implementations. Therefore it is not desirable
to only have a single simulator for all scales (see also Chapter 3).

The following list contains a selection of well known simulators for the different levels of
detail that are shown in Figure 5.2:

Population models: Nengo (Stewart et al., 2009), Topographica (Bednar, 2009)

Point neuron models: Brian (Goodman & Brette, 2008), NEST (Gewaltig & Diesmann,
2007), PCSIM (Pecevski et al., 2009)

Compartmental models: GENESIS (Bower & Beeman, 1997), MOOSE (Ray & Bhalla, 2008),
NEURON (Hines & Carnevale, 1997), SPLIT (Hammarlund & Ekeberg, 1998)

Reaction-diffusion models: MCell (Kerr et al., 2008), STEPS (Wils & De Schutter, 2009)

Only in the recent years, researchers in computational neuroscience started to integrate the
models on the different levels that were created independently in the past. This is a promising
approach to understand the brain as a whole, and it is highly probable that we learn more
about the brain on a system level by integrating different models, than we learned by looking
at the levels separately.

This integration marks a completely new direction in the research of neural systems, and
the technology for this kind of multi-scale models is only just starting to become available.
Moreover multi-scale modeling is not very common in other fields of science, either. This means
that we cannot learn from the experience of others, but have to develop our own methods
instead.
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5.3 Interoperability between simulators

The rising complexity of the models, especially in large-scale neuroscientific projects such as
FACETS, requires the integration of small models on multiple scales into larger models.

In order to study the dynamics of a single compartmental neuron model, for example, it is
important to provide the model neuron with realistic input from a large number of presynaptic
cells. However, it is often not possible to model these cells with the same attention to detail
as the studied neuron because of the requirements for and computing power this would entail.
One possibility to overcome this limitations is to provide input to the neuron by using a network
of point neurons modeled in another simulator. The information that is gained from such a
study with a detailed neuron model can then be used to refine the point neuron model.

Such an integration can happen in two basic ways: offline, on the level of a common
language, or on the level of data files, and online, allowing different applications to talk to
each other at run time.

5.3.1 Offline interoperability

One example for a tool that allows offline interoperability between different simulators has
been introduced in Chapter 4. PyNN is a common interface for different simulators, which
allows the researcher to use different simulators with a common description language. This
makes it easier to port models from one simulator to another, and minimizes the effort for
porting between different programming and configuration languages.

Other approaches for offline interoperability are based on the data format of the applications
and provide common interfaces to read and write data, or to use the same analysis and
visualization tools for the data originating from different simulators.

However, an offline approach only allows to implement open loop interactions between
applications, where the data flows from one application to the next, but without recurrent
connections between the applications. The simulation of closed loop interactions requires the
transmission of data between the application at run time.

5.3.2 Online interoperability

An example of a model that requires the interaction of simulators in an online fashion is a
network of point neurons (for example simulated in NEST) where each neuron model has
biologically realistic synapses, based on a reaction-diffusion system (for example simulated in
STEPS). Because of the bidirectional interactions between neurons and synapses, this model
cannot be simulated in an offline fashion.

An extension to this is to include hardware into the setup: a camera (e.g. the dynamic
vision sensor developed at the ETH Zürich, http://siliconretina.ini.uzh.ch/wiki/

index.php) could provide input to a model of the visual system. To close the loop, this
model could be coupled to a system that controls camera movement and thus decides what
the model sees next.

The setup of such a closed-loop simulation, however, was often tedious in the past. Most
solutions were based on named pipes or sockets to transmit the data between different appli-
cations. This required a manual synchronization of the applications, and the development of
custom data protocols understood by both simulators.

http://siliconretina.ini.uzh.ch/wiki/index.php
http://siliconretina.ini.uzh.ch/wiki/index.php
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5.4 The multi-simulator coordinator MUSIC

To bridge the gap between models on different scales, and to allow a model in one simulator
to interact with a model in another simulator, it is necessary to couple the different simulators
at run time. In addition to coupling different simulators, this approach can be used to couple
programs for stimulus generation, data analysis, and data visualization with simulators, and
with each other.

On the first INCF workshop on large-scale modeling of the nervous system (Djurfeldt &
Lansner, 2007), a library for the exchange of data between simulators for spiking neurons at
run time was first discussed. In 2008, the International Neuroinformatics Coordinating Facility
(INCF) commissioned a standard to allow this. The Multi Simulator Coordinator (MUSIC ;
Ekeberg & Djurfeldt, 2008) is a library based on MPI (Message Passing Interface Forum, 1994),
which lets different applications exchange spikes, continuous data, and arbitrary text messages
at run time. MUSIC coordinates the timing of the data exchange, sets up communication
routes between the different applications, and makes sure that the data from each process of
one application arrives at the correct process in another application at the right time.

Figure 5.3: Illustration of a typical multi-simulation using MUSIC (taken from Djurfeldt et al.,
2010): Illustration of a typical multi-simulation using MUSIC. Three applications, A, B, and
C, are exchanging data during run-time. Each application runs in a set of MPI processes.
Data flows exit and enter ports, each spanning the set of processes of the application.

The basic setup of a multi-simulation that uses MUSIC is shown in Figure 5.3. Applications
that use the MUSIC library can register so-called ports with the library. A port is a named
connection point that provides an arbitrary number of communication channels. The number of
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channels is called the port’s width. Different types of ports are available for spikes, continuous
data, and text messages. An output port of one application can be connected to an input
port provided by another application, given the ports have the same width and type. The
communication graph is set up in a configuration file that is read by MUSIC when the simulation
is started.

A multi-simulation using MUSIC is run in three distinct phases: during the launch phase,
the applications are started with the number of processes that is specified in the MUSIC
configuration file. Technically, the launch phase starts with the call of mpirun and ends when
the constructor of the Setup object is called. The creation of the Setup object marks the
begin of the setup phase, in which applications can publish the ports they can receive and
send data on. The Setup object is responsible for calling MPI::Init(). The last phase is the
run-time phase, which starts with the destruction of the Setup object by the constructor of
the Runtime object. At the beginning of this phase, MUSIC sets up the communication graph
between the applications. During the run-time phase, the applications can send and receive
data and have to call the tick() function of the Runtime object in regular intervals. The
interval is specified during the creation of the Runtime object.

5.4.1 Requirements for using MUSIC

To use MUSIC, an application has to fulfill several requirements, which are described in their
temporal order during the multi-simulation in the following list:

Initialize MUSIC by creating a Setup object.

Publish ports to inform MUSIC about the ports on which the application can send and receive
data during the run-time phase.

Map ports to inform MUSIC about the processor, on which the data for a specific channel
on a port is made available.

Initiate the run-time phase by creating a Runtime object and inform MUSIC about the
desired time step.

Advance time by calling tick() in regular intervals as specified during the creation of the
Runtime object. During this call, MUSIC transfers the events collected in the previous
simulation cycle.

Send and receive events during the simulation by using the communication facilities of MU-
SIC. Received events have to be delivered to the targets in the receiving process.

Finalize MUSIC by calling finalize() on the Runtime object. This shuts down all com-
munication and allows the applications to quit safely.

5.4.2 Auxiliary tools for MUSIC

In addition to the library, MUSIC comes with a number of tools that provide event sources for
stimulus creation, and event sinks for the visualization and recording of data, independently of
the specific simulator used. These applications use the same mechanisms as the simulators to
connect to MUSIC and therefore comprise minimal examples of how to use the MUSIC library.
The output of the visualization application is shown in Figure 5.4.
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(A) (B)

Figure 5.4: Visualization tools to be used with MUSIC (taken from Djurfeldt et al., 2010):
Two window captures from 3D visualizations of the cortex and striatum model (Djurfeldt et al.,
2010). (A) 500 outputs from the cortex model in NEST are visualized on a planar grid, the
radii and intensity of the color of the neurons increase when they spike. (B) 10 medium spiking
(red) and 10 fast spiking (blue) neurons in the striatal network in MOOSE are visualized in
the same manner.

5.4.3 Simulator support

MOOSE and NEST were the first two simulators to be extended by an interface to MUSIC.
These interfaces demonstrated the implementability of the standard, and enabled the first
multi-scale simulation, which combined two models that had been developed independently
before (Djurfeldt et al., 2010).

MOOSE (Multiscale Object Oriented Simulation Environment, http://moose.ncbs.res.
in/) is a simulator for detailed biological models of neuronal and biochemical networks. It is
a multi-scale simulator in the sense that models can be built by coupling components from
different levels of detail, from single molecules to whole neurons. Although MOOSE already
supports multi-scale simulations itself, the combination of existing models within MOOSE
would still require to port the models to MOOSE. In order to relieve the researcher from this
task, the addition of a MUSIC interface is a valuable contribution to strengthen MOOSE’s
position in the field of computational neuroscience.

Objects in MOOSE communicate with each other by sending messages. Here, a message
is a connection between two objects which allows them to exchange information during the
simulation. For the implementation of the MUSIC interface, two new classes of objects were
developed, one for receiving spike information from MUSIC and relaying it to other MOOSE
objects, and one for receiving messages from MOOSE objects and forwarding them to MUSIC.
The details of the MUSIC interface for MOOSE are described in Djurfeldt et al. (2010).

The following section contains a detailed description of the MUSIC interface for NEST,
which we designed and implemented during this thesis.

http://moose.ncbs.res.in/
http://moose.ncbs.res.in/
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5.5 The MUSIC interface for NEST

NEST is a simulator specialized on large networks of point neuron models, or neuron models
with a small number of electrical compartments (see Chapter 2). It is used to study phe-
nomenons on the network level rather than the dynamics of single neurons. The use of MUSIC
in NEST is optional. By using the preprocessor macro HAVE MUSIC, it is possible to compile
NEST without requiring the MUSIC library.

Neurons and other sources or targets for events that are located in remote MUSIC applica-
tions are represented by input or output proxies in NEST. These proxies are derived from the
base class Node just like all other nodes in NEST. This means that the functions GetStatus

and SetStatus can be used to retrieve and modify their parameters, and that they can be
integrated into the network like neurons and devices. This design only required three new
classes, and minimal changes to the existing classes of NEST.

The creation of Setup and Runtime objects and the transition from setup to run-time
phase are handled by NEST’s Communicator class. In addition, this class was changed to use
a MPI communicator created by MUSIC instead of MPI COMM WORLD, which is used by MUSIC
itself. This change is necessary to let MUSIC optimize the data transfer between the different
applications.

The scheduler of NEST was changed to execute the MUSIC function tick() once per
update cycle. This function delivers queued events to their target application, which then
forwards them to the respective target neurons.

5.5.1 Sending events to MUSIC

The class music out proxy is responsible for sending data from nodes in NEST to remote
MUSIC applications. For each output port, one music out proxy is created in each process.
However, one output proxy can handle all channels that are associated with the corresponding
output port. The following listing shows the creation of such a proxy, and the setup of
connections from neurons to the proxy using PyNEST (see Chapter 3 and Eppler et al., 2009).

1 o u t p r o x y = C r e a t e ( ” m u s i c o u t p r o x y ” )
2 S e t S t a t u s ( outproxy , {” port name ” : ” s p i k e s o u t ” })
3 neuron1 = C r e a t e ( ” i a f n e u r o n ” )
4 Connect ( neuron1 , outproxy , {” m u s i c c h a n n e l ” : 0})
5 neuron2 = C r e a t e ( ” i a f n e u r o n ” )
6 Connect ( neuron2 , outproxy , {” m u s i c c h a n n e l ” : 1})
7 neuron3 = C r e a t e ( ” i a f n e u r o n ” )
8 Connect ( neuron3 , outproxy , {” m u s i c c h a n n e l ” : 2})
9 neuron4 = C r e a t e ( ” i a f n e u r o n ” )

10 Connect ( neuron4 , outproxy , {” m u s i c c h a n n e l ” : 3})
11 neuron5 = C r e a t e ( ” i a f n e u r o n ” )
12 Connect ( neuron5 , outproxy , {” m u s i c c h a n n e l ” : 4})

Line 1 creates an instance of a music out proxy, which will send the spikes it receives to
the port called spikes out, which is set using SetStatus in line 2. Line 3 creates a neuron of
type iaf neuron, which is connected to channel 0 of the output port in line 4. The remaining
lines create more neurons and connect them to the channels 1 to 4. The width of the port is
set implicitly by the highest channel number that is used in the model description.
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The MUSIC channel is set during connection setup and thus stored in the Connection

object. In addition, the channel is stored by the proxy in an index map (called indexmap)
during the connection handshake (see Section 2.4.3) to be mapped with MUSIC before the
start of the first simulation. During the simulation, the channel will be transmitted to the
proxy with each spike, so that the proxy knows on which channel the spike has to be sent.

Before the simulation, NEST’s scheduler calls calibrate() on each node. In this function,
the music out proxy checks if the used channels are compatible with the width of the port,
and the content of the indexmap is used to map the port with MUSIC. This happens in three
steps:

1. Create a MUSIC::EventOutputPort, outport. This triggers an exception if the port
already exists

2. Create a MUSIC::PermutationIndex and initialize it with the data from the indexmap.
The PermutationIndex informs MUSIC about the local channels in a process.

3. Call map() on outport with the PermutationIndex argument to map the port with
MUSIC.

Note that the connections to the music out proxy bypass NEST’s system for handling
synaptic interactions. Incoming events are directly forwarded to the corresponding channel
on the MUSIC port outport by the music out proxy. Synaptic interactions have to be
implemented in the receiving application.

(A) (B)

Figure 5.5: Network representation for the music out proxy (taken from Djurfeldt et al.,
2010): (A) Nodes in NEST are distributed over the processes (p = 0, 1, 2). iaf denotes an
integrate-and-fire neuron, (iaf) denotes a NEST proxy. mop denotes a music out proxy.
MUSIC channels are indicated in square brackets for each connection (arrows). (B) A sketch of
the complete connectivity from the nodes (lower squares) over the different channels (numbers
in square brackets) to MUSIC. The dashed box encloses all proxies that belong to one MUSIC
output port.

Figure 5.5 shows the network in NEST after the above commands were executed using
three NEST processes. The proxy is created in all three processes, while connections are only
established on the process, where the presynaptic neuron exists. This setup is consistent with
the ordinary setup of a network in NEST without using MUSIC (see Section 2.3.2).
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Figure 5.6: Sequence diagram for the NEST-MUSIC interaction using a music out proxy:
Sequence diagram showing the events from setup phase to run-time phase of a network con-
taining a music out proxy. (A) On start-up, NEST creates a MUSIC Setup object. (B)
The proxy is created by the command mop = Create("music out proxy"). (C) The port
name for the proxy is set using SetStatus(mop, "portname", "spikes out"). (D) A neu-
ron is created by calling iaf = Create("iaf neuron"). (E) The neuron is connected to the
MUSIC output channel 2 of the port the proxy represents using Connect(n, mop, {"music -

channel": 2}). (F) The proxy stores the connection in its indexmap, which contains the
indices of all local channels of the port. (G) Calling Simulate() first calls calibrate()

on the proxy, where it registers itself with MUSIC using the indexmap, built previously. (H)
NEST then enters the MUSIC run-time phase by calling enter runtime() on the Setup

object, which returns a Runtime object and destroys itself thereafter.

Figure 5.6 shows the internal order of events for a complete example of an iaf neuron

that sends its events via a music out proxy to targets in remote MUSIC applications.
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5.5.2 Receiving events from MUSIC

For sending events to MUSIC, we could set the channel during the setup of the connection. This
was possible, because connection setup in NEST includes a handshake, in which the receiver
is informed about the connection and can therefore store the mapping of connection number
to desired channel (cf. Section 2.4.3) in order to send the events to the right MUSIC channel
during the simulation. This mechanism was originally designed to select the compartment or
receptor type a neuron connects to. For the selection of a sending compartment, we do not
have such an infrastructure. This means that we cannot specify the MUSIC channel during
connection setup to a single proxy.

The setup for handling incoming events from MUSIC in NEST is thus more compli-
cated than the setup for outgoing connections, and we need two classes instead of one: the
class MusicEventHandler is used to receive the events from MUSIC and forwards them
to the music in proxy that corresponds to the channel the event is addressed to. The
MusicEventHandler maintains a map channelmap, which maps the channel to the proxy for
the channel. The proxy itself can be connected to other nodes in the network. In contrast to
the setup for sending events, these connections use the synapse system and can thus use all
synapse types available in NEST.

The creation of MusicEventHandlers for the MUSIC input ports is carried automatically
before the simulation. The following listing contains an example that illustrates the use of
music in proxys in a small network:

1 i n p r o x y 1 = C r e a t e ( ” m u s i c i n p r o x y ” )
2 S e t S t a t u s ( i n p r o x y 1 , {” port name ” : ” s p i k e s i n ” , ” m u s i c c h a n n e l ” : 0)
3 i n p r o x y 2 = C r e a t e ( ” m u s i c i n p r o x y ” )
4 S e t S t a t u s ( i n p r o x y 2 , {” port name ” : ” s p i k e s i n ” , ” m u s i c c h a n n e l ” : 1)
5 n e u r o n s = C r e a t e ( ” i a f n e u r o n ” , 4)
6 D i v e r g e n t C o n n e c t ( i n p r o x y 1 , [ n e u r o n s [ 0 ] , n e u r o n s [ 1 ] ] )
7 D i v e r g e n t C o n n e c t ( i n p r o x y 2 , [ n e u r o n s [ 1 ] , n e u r o n s [ 2 ] ] )
8 Connect ( i n p r o x y 1 , [ n e u r o n s [ 3 ] ] , model=” s t d p s y n a p s e ” )

Line 1 and 2 create two music in proxys. The port name of both is set to spikes in,
the music channel to 0 and 1 in line 2 and 4, respectively. Line 5 creates four neurons of type
iaf neuron. The first and second neuron receives input from the first music in proxy (line
6), the second and third receives input from the second music in proxy (line 7). In addition,
the second proxy is connected to the fourth neuron using a STDP connection in line 8.

When the calibrate() function of a music in proxy is called by the scheduler be-
fore the start of the simulation, it registers itself with the simulation engine, by calling the
register music in proxy() function of the Network class. This class maintains a list of
MusicEventHandlers for the different MUSIC input ports and forwards the registration to
the one corresponding to the port the proxy is assigned to. If the handler does not exist yet,
it is created by register music in proxy().

After the calibration of nodes, the channel maps of all MUSIC event handlers contain all
local proxies that are able to handle incoming spikes. At this time, the MusicEventHandler

can use the channel map to map the channels with MUSIC.
For each incoming spike, MUSIC calls operator() on the event handler with the time of

the spike and the target channel as arguments. The function operator() only stores the time
of the spike in the event queue for the corresponding channel and returns.



93

(A)
p=0 p=1 p=2

mip
[0]

(iaf) (iaf) iaf

iaf (iaf) (iaf)

iaf (iaf)(iaf)

1

2

3

4

5

mip
[1]

mip
[0]

mip
[1]

mip
[0]

mip
[1]

iaf (iaf) (iaf)6

(B)

Figure 5.7: Network representation for the music in proxy (taken from Djurfeldt et al.,
2010): (A) Nodes in NEST are distributed over the processes (p = 0, 1, 2). iaf denotes an
integrate-and-fire neuron, (iaf) denotes a NEST proxy. mip denotes a music in proxy. The
numbers on the left indicate the global id of the nodes. MUSIC channel ids are indicated in
square brackets for each music in proxy. The STDP connection is indicated by a dotted
arrow. (B) A sketch of the complete connectivity from MUSIC (channels in square brackets)
to the MUSIC event handler (grew rectangles) to the proxies (squares labeled 1 and 2) to the
actual target nodes (lower squares). The STDP connection is indicated by a dotted arrow.
The dashed box encloses all event handlers and proxies that represent a MUSIC input port.

Figure 5.7 shows the network in NEST after the above commands were executed using
three NEST processes. The proxies are created in all three processes, while connections are
only established on the process, where the postsynaptic neuron exists. In contrast to the
music out proxy, the connections that originate at music in proxys can use all of NEST’s
built-in synapse types.

Buffering of incoming events

The MUSIC standard allows to send events to a target application already long before they
are due. This means that the events have to be buffered in the MusicEventHandler that
corresponds to the port, on which the event enters the application.

During simulation, the events are just queued by operator(). Once per update cycle, the
function update() is called on each MusicEventHandler in order to deliver the spikes that
are due. The algorithm iterates over the event queues of all channels of the port and checks
if the current value in the queue falls into the current time slice of the simulation. If no, it
returns. If yes, it creates a new SpikeEvent with the corresponding time stamp, and passes it
directly to the handle() function of the proxy associated with the channel. This bypasses the
synapse system in NEST and only informs the proxy about a new spike in a remote application.
Upon arrival of new events, the handle() function of the music in proxy immediately calls
Network::send() to deliver the event to all local targets via the synapse system.

Figure 5.8 shows the internal order of events for a complete example of an iaf neuron that
receives its events from a music in proxy from sources in remote MUSIC applications.
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Figure 5.8: Sequence diagram for the NEST-MUSIC interaction using a music in proxy:
Sequence diagram showing the events from setup phase to run-time phase of a network con-
taining a music out proxy. (A) On start-up, NEST creates a MUSIC Setup object. (B) The
proxy is created by the command mip = Create("music in proxy"). (C) The port name
and and the channel of the proxy are set using SetStatus(mip, {"portname": "spikes -

in", "music channel": 3}). (D) A neuron is created by calling iaf = Create("iaf -

neuron"). (E) The proxy is connected to the neuron using Connect(mip, n). (F) Calling
Simulate() first calls calibrate() on the proxy, where it registers itself with NEST kernel
using the function register music in proxy() with the port name, the channel, and itself
as arguments. (G) the NEST kernel stores the new MusicEventHandler in its music in -

portmap under the name spikes in. (H) The MusicEventHandler registers mip as the
proxy for channel 3. (I) The function publish ports() creates and maps a MUSIC output
port object for the ports that are known to NEST. (J) NEST then enters the MUSIC run-time
phase by calling enter runtime() on the Setup object, which returns a Runtime object and
destroys itself thereafter.



95

5.6 Summary

The interfaces in NEST and MOOSE were tested with a number of toy scenarios to exchange
spikes with the tools that come with MUSIC. To show the applicability to real-world simulations,
a live demonstration of these interfaces was given at the INCF booth at the Society for
Neuroscience Conference in Washington 2008, where a detailed striatal model in MOOSE was
coupled with a cortical model in NEST. The performance of the system was measured later
on in systematic benchmark simulations. A large network model was simulated once in pure
NEST, and once by splitting it into two parts that communicate via MUSIC. The two parts
were again simulated in NEST. This setup showed that we obtain a scaling behavior with
MUSIC that is comparable to the scaling without using MUSIC (Djurfeldt et al., 2010).

Meanwhile a number of neuroscience laboratories are using the MUSIC interface for NEST
to couple their own research tools to network models developed in NEST at run time. One
example for the integration of models that is carried out using this interface is the model by
Casagnes et al. (2010). In this model, visual stimuli are generated by an application module
written in C++ and Python and fed into a model of the superior colliculus implemented in
NEST. The activity of the superior colliculus model is transferred to a model of the brainstem
in NEST, which is again coupled to a model controlling controls eye movements via motor
commands (written in C++). All four stages of the model use MUSIC to communicate with
the respective next stage. The complete model thus constitutes a closed-loop brain-scale
functional circuit.

Currently, both NEST and MOOSE only support the communication via spikes. This was
sufficient to demonstrate the feasibility of our design and can already be used for many studies
that were not possible before. However, MUSIC also supports the communication of continuous
data values and arbitrary text messages. The extension to these types of communication fits
naturally into the framework that has been designed during this thesis and will be implemented
if future studies require it.
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Chapter 6

Discussion

The basis for this thesis is provided by four projects concerned with the design and the improve-
ment of communication architectures for NEST, a simulator for biological neural networks. In
particular, the projects were concerned with the following communication systems:

• Algorithms and data structures to exchange spikes between nodes across threads and
processes.

• Algorithms to provide convenient access to the data structures of the new simulation
engine of the simulator.

• Algorithms and data structures to exchange commands and data between the simulator
and programmable user interfaces for Python.

• Algorithms and data structures to exchange spikes with other simulators and analysis
tools via the MUSIC library.

Although the new features and changes were carried out in the NEST simulator, they solve
general problems related to the simulation of spiking neural networks. The algorithms can easily
be adapted to be used in other simulators as well. Especially our approach to creating Python
bindings for NEST is sufficiently general to be used by applications also outside neuroscience.

After first tests within the NEST Initiative, the new algorithms and data structures were
made available to the users in the official pre-releases, available at the homepage of the NEST
Initiative at http://www.nest-initiative.org/. The reactions to the new user interface
and other improvements at conferences, summer schools, and on our support mailing list were
very positive, and, according to our users, the new features helped to spread NEST in the
computational neuroscience community.

The algorithms that resulted from the work described in this thesis were presented at
several conferences for computational neuroscience and have meanwhile been published in
peer-reviewed computer science and neuroinformatics journals. For the convenience of the
reader, the original articles are contained in Appendix A.

This chapter provides an embedding of the work presented in the previous chapters into a
broader context and discusses some open questions. It also provides an outlook on our ideas
for future directions in the development of NEST.

http://www.nest-initiative.org/
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6.1 Communication inside the simulator

The availability of distributed computing (using multiple processes and message passing) for
NEST enables researchers to simulate networks that exceed the memory available on a single
computer, and allows to exploit the computing power of multi-processor computers, computer
clusters, and facilities for high-performance computing. This technique also allows to reduce
network construction time, because the network can be built in parallel on multiple machines.
This is especially interesting for very large networks. The improved performance and scaling
already enabled studies that would otherwise not have been possible because of the network
size or simulation run-times (Schrader et al., 2009; Morrison et al., 2007; Helias et al., 2009).
Likewise, the availability of a new framework for the representation of connections allowed the
implementation of structural plasticity (Helias et al., 2008), which was impossible with earlier
versions of NEST.

One of the main problems in earlier versions of NEST was related to the access to nodes
and connections in a multi-threaded setup. Our new algorithms allow to access the connection
information, and the data collected by the different threads, without the need for knowledge
of the internal data structures. This means that the user only specifies the number of threads
before the simulation and does not need to make any other changes to the code compared to
a serial simulation.

Chapter 2 shows that the performance and scaling of the simulation kernel is better with
message passing than with threads. The main reason for this are the cache problems that occur
when different threads access memory concurrently (cf. Section 2.2). As of now, it is unclear
if and how these can be resolved without putting too much effort into the optimization of data
structures and replicating a lot of the work of the developers of operating system kernels and
message passing libraries.

On very large machines, the major part of the memory that is used for storing nodes is used
up by proxies, not by neurons and devices. This results in a node list that can no longer be kept
in the cache memory of the processor, which slows down the simulation. This problem can
be solved by using a more abstract representation of the proxy nodes and a hash table for the
storage of the local target lists. Using this method can cut down the memory required for nodes,
however at the cost of adding an indirection for node access. In a prototype implementation,
we currently test the feasibility of this approach. This refinement process expresses the need
to iteratively search for new solutions for known problems, mediating between the problem and
the hardware domain, while allowing future extensions of the solutions (Gamma et al., 1994).

In their recent work, Kunkel et al. (2009) analyzed the memory consumption of NEST in
a distributed setup. The authors show that the data structure for the storage of connections
entails a large memory overhead, which can be reduced by using optimized data structures
instead of the current array based approach. Such a data structure can be obtained by using
hash tables instead of arrays for all dimensions of the connection storage system that are only
sparsely populated.

The question of how the algorithms and data structures of NEST have to be adapted
to efficiently support the upcoming petascale high-performance clusters is still unclear and a
topic of our active research. At the same time, we still need to be able to run the software on
small and medium-sized multi-processor machines and computer clusters, because these kinds
of machines are already available in many laboratories around the world.
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6.2 Communication between user and simulator

PyNEST allows a clean formulation of simulation scripts in a modern high-level programming
language. The main reason why Python was chosen for the new user interface of NEST is
that many laboratories in the neuroscience community are also moving towards Python and
it is becoming the de-facto standard language of computational neuroscience (Kötter et al.,
2009; Muller et al., 2009). As such, Python helps to reduce the complexity barrier for code
exchange between different researchers, for coupling different tools with each other, and for
porting model descriptions from one simulator to another.

During the manuscript submission of Eppler et al. (2009), one of the reviewers noted that
the high-level API of PyNEST stays very close to the API of NEST, although Python would
have allowed to create an object oriented interface for NEST. The reason for the current syntax
of the PyNEST API is twofold: first, we wanted to make the transition for users easier that
already use SLI. By using the same function names and the same basic way of operation,
we allow an easy translation of simulation descriptions written in SLI to PyNEST. Second,
by keeping the same name and basic semantics of the functions, we can use the user-level
documentation for both SLI and PyNEST.

There are two basic possibilities to create a more convenient API for PyNEST: the first
is to create a second high-level API, which only uses the low-level API, but uses an object
oriented approach for the interaction between the user and NEST. The second approach is to
use the existing high-level API and provide an object-oriented API on top of this. However, as
PyNN reached a state that is very usable and it is questionable if the users would accept such
a new interface at all.

We are currently investigating the features of the new version 3 of Python, which will
break backwards compatibility with Python 2.x. For the transition period, we will provide two
separate versions of the high-level API to give our users the greatest possible flexibility with
regard to the version of Python they use.

6.3 A common interface for different simulators

PyNN provides a uniform API to NEST and many other simulators. This is possible through
simulator-specific backends built on top of the Python interfaces of the simulators (i.e. PyNEST,
in case of NEST). PyNN enables researchers to switch between different simulators very effi-
ciently. This enables the validation of models across multiple simulators, but also to validate
the simulators themselves.

With PyNN, the user has a complete chain of tools from NeuroML (Crook & Howell, 2007;
Crook et al., 2007) to PyNEST, which makes it easier to re-use models developed by others.
In general, this opens interesting possibilities for the implementation of future standards: the
support for such standards can be implemented relatively fast in Python, but may not be as
efficient as in one of the low-level programming languages in which the simulators are written.
However, this allows to test the standards with many simulators without the need for support
in each of them. Once the standardization process reached a usable state, the implementations
can be transferred to more efficient implementations in the simulation engines of the simulators.

In addition to the support for different simulators, PyNN also has a backend for the analog
neural network hardware that was developed in the EU project FACETS (Schemmel et al.,
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2008). Here, PyNN was an important tool to verify and calibrate the hardware against the
established and well-tested implementations of algorithms in the classical simulators.

The different simulators provide efficient support for modeling and simulating neural sys-
tems. PyNN additionally supports concepts like physical units or common data formats for
the resulting data files. These features may well be easier to implement in Python than in the
languages the simulators are written in. Moreover, the use of physical units in the simulation
engine could considerably slow down the simulation.

Last, but not least, the use of a common language for writing model description fosters the
re-use of models and components of models without the need to port them from one simulator
to another. This leads to faster progress in the field, as researchers are not forced to implement
existing models from scratch.

We plan to further support the development of PyNN by providing code and knowledge
to its main developers. On the other side, we already implemented many features in NEST
in order to support a simplification of the NEST backend for PyNN. This has proven to be a
good way of supporting the development of a high-level interface for NEST without wasting
our resources in the development of more sophisticated interfaces for NEST itself.

6.4 Communication between different simulators

NEST was one of the first simulators to be extended by an interface for the MUSIC library.
During the design and creation of the interface, we worked together closely with the original
authors of MUSIC in order to speed up the implementation process. This gave us the opportu-
nity to influence the standardization process of the MUSIC specification, to clarify ambiguities,
and to shape the library implementation into a form that can easily be used by simulator and
tool developers.

Our interface to the MUSIC library did not require major changes to NEST, as the idea
of sending and receiving channels and ports fell nicely into the already existing infrastructure
of NEST’s concepts. The MUSIC library is only used by NEST if requested by the user at
build time. All additional functionality provided by the interface is protected by preprocessor
macros in order to keep NEST independent. The interface consists of very little code, so that
the additional effort for maintaining the interface is only small.

We currently do not support all of MUSIC’s features. For example, the interface does not
support any events other than spikes to be sent or received through the MUSIC interface. For
future releases, we plan to also support currents and message events to add the possibility for
more sophisticated communication with other simulators and tools.

The availability of a MUSIC interface for NEST allows new modeling paradigms to be
explored by coupling NEST to other simulators and other software. This allows to build models
that span multiple levels of detail and already has proven to be an important selling point for
NEST over other simulators. Several laboratories are currently exploring the possibilities of
this interface in connection with their own tools for stimulus generation and data analysis.

At the moment of writing, only NEST and MOOSE (http://moose.ncbs.res.in/) sup-
port the MUSIC standard. However, interfaces for NEURON (Hines & Carnevale, 1997) and
PCSIM (Pecevski et al., 2009) are currently under development. The fact that the MUSIC
project was initiated and is funded by the INCF gives us hope that it will be widely used.

http://moose.ncbs.res.in/
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6.5 Productization of NEST

The term productization in the field of software engineering characterizes the sum of all work
that is required to develop a software project written for a single and specific purpose into a
software product that is useful for others.

During the time of this thesis, NEST gained a lot of new users due to its use in the EU
project FACETS and due to its use in several international summer schools for computational
neuroscience. While this development shows that NEST reached a state that can be used for
many different applications in computational neuroscience by many users, it also brings new
challenges with respect to NEST as a software product.

Some important steps in the productization of NEST were accomplished during the time
of this thesis. In particular, the following components were improved:

• Configuration, compilation and installation.

• Availability of good user level documentation.

• Availability of good developer documentation.

• Intuitive and convenient user interface.

Since its earliest versions, NEST uses the GNU Build System (http://www.gnu.org/
software/hello/manual/automake/GNU-Build-System.html) for its configuration and
build process. The first step in the productization was fully achieved by the introduction
of a proper installation target to this process in 2006. It follows the recommendations of
the Filesystem Hierarchy Standard (http://www.pathname.com/fhs/) and allows to install
NEST on a variety of Unix-like platforms conveniently. This made it easier for our users to
install and update NEST. In addition, this was the basis for creating binary packages for a
variety of Linux distributions, and finally to create a “live CD”, which can be run on almost
all modern computers without the need to permanently install Linux or NEST at all. Espe-
cially the last step made the use of NEST at summer schools easier, as it allows the tutors to
concentrate on the usage of NEST, instead of its installation during the course.

The section “Documentation” on the homepage of the NEST Initiative at http://www.

nest-initiative.org/ offers documentation for the usage of the different subsystems of
NEST, and provides tutorials for the setup of neural simulations. Many of the examples
are available once for the simulation language interpreter SLI and for the new user interface
PyNEST. The homepage also contains tutorials for the creation of extension modules, new
synapse and neuron models, and for the configuration of NEST. This documentation is updated
upon changes in NEST.

PyNEST, the new Python-based user interface for NEST proved to be a good alternative to
SLI in that it attracts many new users that are already familiar with the Python programming
language. The feedback from these users clearly attests that the new interface indeed lowers
the initial problems that kept them from using earlier versions of NEST.

Finally, we present NEST regularly at conferences for computational neuroscience and
neuroinformatics in order to inform our users about new features and changes. Meanwhile
NEST is used as one of the standard simulators at different summer schools and courses in
the field to teach the concepts of modeling.

http://www.gnu.org/software/hello/manual/automake/GNU-Build-System.html
http://www.gnu.org/software/hello/manual/automake/GNU-Build-System.html
http://www.pathname.com/fhs/
http://www.nest-initiative.org/
http://www.nest-initiative.org/
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6.6 Character of the work

From its very beginning, NEST has been developed in a collaborative effort by several labo-
ratories for computational neuroscience. The idea was that each research group contributes
the technology that it currently needs to conduct its research, and that the common parts of
the simulator are developed together. This need for collaboration has not changed since then.
Quite to the contrary: the use of NEST in large-scale projects such as FACETS even reinforces
the need for collaboration. NEST has reached a level of complexity that cannot be handled
by small groups alone, and we depend on the cooperation of our users more than ever. Most
of the improvements described in this thesis have been designed and implemented in close
cooperation with the users that need to work with them. This is also reflected in the number
of authors of the articles that resulted from this work.

The work for this thesis was carried out in source code, which was simultaneously used
and modified by many other developers. Thus, the data structures and algorithms had to be
compatible with the existing structure of the code, and with changes by other people in the
spirit of the iterative and incremental development strategy of the NEST Initiative (Diesmann
& Gewaltig, 2002; Booch, 1996; Brooks, 1995). During the time of this thesis (i.e. May 2006
through June 2010), 15 people worked on the code base of NEST and committed approximately
3100 changesets.
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Figure 6.1: Number of code lines changed per revision: The largest changes are annotated to
show the temporal sequence of new features. The symmetry between added and removed lines
shows that a large fraction of the changes consists of optimizations rather than the addition
or removal of code.

The high activity on the NEST source code is illustrated in Figure 6.1, which shows the
commit history of NEST’s code repository during the time of this thesis. Specifically, it shows
when code lines were added (black) or removed (gray).
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Figure 6.2: Lines of code in NEST: (A) Absolute number of lines of code including lines of
user-level documentation (yellow). (B) Relative number of lines of code.

Figure 6.2 shows the development of the lines of code in NEST over the past fourteen years
(obtained with a modified version of SLOCCount, http://www.dwheeler.com/sloccount/).
Panel (A) of the figure shows the absolute number of code lines. In the beginning of the
development for NEST 2, we lost a lot of code, as not all models were ported to the new API
yet. Later, we gained Python code, as examples and test scripts for PyNEST were written.
Panel (B) of the figure shows that the relative fractions of the different code parts stayed
essentially constant throughout the development of NEST with a slight trend from compiled
C++ code towards high-level code written in SLI or Python.

6.7 Outlook

Real biological neurons communicate not only by using spikes. They exhibit a large number
of other mechanisms to transmit information between each other. Examples are electrical
couplings between neurons (so-called gap junctions, see e.g. Connors & Long, 2004), which
allow the direct flow of ions from one neuron to the other, and neuromodulators, which can
influence the activity of whole groups of neurons simultaneously. Knock-out experiments that
deactivate these mechanisms have shown that they play an important role in the information
processing. However, the exact role of these mechanisms is not entirely understood and
implementations to support them in simulations in NEST remain to be investigated. It is
clear, however, that this would require substantial changes to NEST’s network representation
and to the algorithms and data structures of the communication infrastructure.

The PyNEST interface currently only allows the communication from Python to NEST. For
implementing on-line visualization tools and to support neuron and synapse models written
in Python (e.g. for rapid prototyping), it is desirable to also let NEST talk to Python. In
principle, this is possible by connecting to the Python interpreter at run-time and executing
the respective code there. (for a general discussion of interpreter-interpreter interaction, see
Diesmann & Gewaltig, 2002). However, Python currently only allows access to its interpreter
by a single thread at once. This is incompatible with the multi-threaded update scheme of
NEST. A solution for this problem remains to be investigated.

http://www.dwheeler.com/sloccount/
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With the growing complexity of the code, it becomes more and more difficult to ensure the
correctness and consistency of the simulator. To guarantee the correctness of the implementa-
tion and the results obtained with NEST, we have designed a framework for running systematic
unit tests in NEST (Eppler et al., 2009). The introduction of the technology, including support
for test-driven programming, seems necessary to keep up the pace of software development
with the rapid development and the changing research directions in the field of computational
neuroscience.

Currently, networks have to be built from scratch for each experiment, and the state of
the network is completely lost when NEST is shut down. This is a problem for studies that
involve plasticity, or that have long simulation run-times. In addition, we often face time limits
on the run-time of a job on large clusters. A solution for these problems is to store the full
state of the network once a certain state is reached, and later resume the simulation from this
point. Especially for networks that involve plasticity and learning, this would allow to conduct
several experiments from the same starting conditions without the need to wait until these
have developed. We are currently exploring methods for storing the network to the hard disks
of the computer. This would have the additional advantage that the network can be analyzed
with external programs to obtain statistical measures of the connectivity.

The computational neuroscience community currently develops standards for model de-
scriptions based on XML (Crook & Howell, 2007; Crook et al., 2007). Several standards for
different levels of detail are developed under the name NeuroML. We actively participate in
these efforts and plan to support them in NEST, once the standardization process reached a
usable state.

In the present work we have focused on advanced communication interfaces and aspects
of high-performance computing. This research needs to continue to enable the simulation of
networks on the brain-scale in order to close the functional circuits, and to make predictions
for new neuroscientific studies. However, several recent publications (Brette et al., 2007;
Djurfeldt & Lansner, 2007; De Schutter, 2008) point out that the development of technologies
to guarantee the reproducibility and verify the correctness of neuronal simulations are of the
same importance.
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Abstract. To understand the principles of information processing in
the brain, we depend on models with more than 105 neurons and 109

connections. These networks can be described as graphs of threshold
elements that exchange point events over their connections.

From the computer science perspective, the key challenges are to repre-
sent the connections succinctly; to transmit events and update neuron
states efficiently; and to provide a comfortable user interface. We present
here the neural simulation tool NEST, a neuronal network simulator
which addresses all these requirements. To simulate very large networks
with acceptable time and memory requirements, NEST uses a hybrid
strategy, combining distributed simulation across cluster nodes (MPI)
with thread-based simulation on each computer. Benchmark simulations
of a computationally hard biological neuronal network model demon-
strate that hybrid parallelization yields significant performance benefits
on clusters of multi-core computers, compared to purely MPI-based dis-
tributed simulation.

1 Introduction

The neuronal networks in our brains can be described as weighted, directed
graphs, with neurons as nodes and synaptic connections as edges. Neurons com-
municate by sending and receiving point events (spikes) through their connec-
tions (synapses). In the mammalian cortex, each neuron sends connections to
about 104 other neurons and receives connections from as many. Just 1 mm3

cortex contains some 105 neurons with 109 connections [1]. This represents a
threshold size for simulations, as a realistic number of synapses per neuron can
be combined with realistic sparseness (connection probability ∼ 0.1). Brain func-
tion emerges from the spatio-temporal patterns of neuronal spike activity, but
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the principles are poorly understood. Progress in understanding brain function
therefore depends on simulation studies of large cortical networks.

In large neuronal networks, we can neglect the geometric and biophysical
complexity of individual nerve cells and describe neurons as point-like objects
with a dynamic state governed by a set of ODEs. The most common state
variable is the membrane potential V , which is affected by spikes that arrive at
the neuron’s synapses. Whenever V crosses a threshold value Vth, the neuron
produces a spike, which is transmitted to all adjacent neurons with a delay of a
few milliseconds. Each connection can have a different delay and weight. Weights
may evolve as a result of neuronal activity, a phenomenon known as synaptic
plasticity, the biological substrate of learning. The spikes of an individual neuron
are rare and occur at rates of 1–50 Hz, whereas the rate of incoming spikes is of
the order of 100 kHz due to some 104 incoming connections.

Simulating large-scale neuronal networks poses several challenges: (i) 109–
1012 connections must be stored; this requires a distributed representation. (ii) A
large number of spikes must be buffered until they are transmitted across the
network. (iii) Simulation results must be reproducible down to the level of mem-
brane potentials and spike times. (iv) The object-oriented implementation must
be appropriate for the problem domain and allow network and machine level
optimizations such as efficient caching.

In this contribution, we describe how the Neural Simulation Tool NEST [2]
addresses these issues to efficiently simulate neuronal networks of more than 105

neurons and 109 synapses. In section 2 we discuss how NEST represents nodes
and connections, before describing the update and communication algorithms
in section 3. Section 4 demonstrates the performance of our hybrid approach.
NEST is available from www.nest-initiative.org.

2 Network Representation

A network model consists of nodes, connections, and events, each represented
by an abstract base class. Models for neurons and devices inherit from class
Node and implement the state vector, the internal dynamics, and the responses
to different types of events.

NEST distributes a network model over NVP virtual processes. A virtual
process is a POSIX thread that lives in one of NMPI MPI processes [3, 4]. The
total number of virtual processes NVP is the number of MPI processes times the
number of threads per process: NVP = NMPI ×NThrd. NEST ensures that for a
given number of virtual processes NVP, all simulations of a model yield identical
results, independent of the combination of NMPI and NThrd.

Neuron models are often stochastic, consuming many random numbers. To
distribute the load of random number generation while obtaining identical sim-
ulation results for different combinations of NMPI and NThrd on NVP = const
virtual processes, we give each virtual process its own random number genera-
tor. By default we use a lagged Fibonacci generator, because it can be seeded to
produce non-overlapping sequences of random numbers [5].
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2.1 Nodes and Proxies

In a network with n nodes, each node is given a unique integer gid in order of
creation, and is assigned to a virtual process such that vid = gid mod NVP.
Each virtual process manages the memory for its nodes. In addition, each virtual
process has a vector of size n, called node list, with pointers to its own nodes
and pointers to proxies for nodes that belong to other virtual process. Within
an MPI process, we can collapse the node lists of all its virtual processes into a
single list to conserve memory, as illustrated in figure 1.
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Fig. 1. Distributed and multi-threaded network representation. (A) The network as a
directed graph. (B) Sketch of the distribution of four virtual processes onto two MPI
processes, P0 and P1. (C) Collapsed node lists of the two MPI processes containing the
nodes of two VPs each. The first column shows the node’s gid, the second contains
the VP a node is assigned to; ’-’ indicates that a node is created for each VP. The
third column contains the node type: pg, Poisson spike generator device; vm, voltmeter
device; iaf, integrate-and-fire model neurons.

This representation has the following advantages: (i) we can access each node
directly with its gid as index to the node list on any virtual process; (ii) each
virtual process knows the type of each node in the network; (iii) there is no
memory overhead for pure multi-threaded simulations.
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For a network of n nodes, each requiring SN bytes of memory, and proxy
nodes requiring SP bytes, the required memory is given by:

Mnodes =
n

NMPI
SN +

(

n− n

NMPI

)

SP . (1)

Typical values are SN = 480 bytes and SP = 56 bytes. Thus, for 10 and more
MPI processes, more than half of all memory occupied by objects is occupied by
proxy nodes, and more than 90% for more than 80 MPI processes. In absolute
numbers, though, Mnodes is only around 70 MB for a network of 106 nodes
distributed across 100 processes, which is negligible compared to the memory
required for the connections in the network, cf. sec. 2.2. From a performance
aspect, a node list filled with mostly proxies could become suboptimal if the
node list became so large that it could no longer be cached efficiently. In this
case, a fast hashing lookup may become more efficient.

Devices So far we assumed that nodes correspond to neurons. We will now
discuss nodes representing devices, such as spike injectors and recorders. There
are two types of devices: recording devices and stimulation devices. Recording
devices measure the state of one or more neurons and write the data to disk.
If nodes on different virtual processes are assigned to the same device, each
of the virtual processes gets its own instance of the recording device. This has
two advantages: (i) the measured data need not be transmitted between virtual
processes; (ii) each device instance can write to its own local disk. Stimulation
devices supply signals to one or more neurons, thereby manipulating their state.
Again, each virtual process has its own instance of a given stimulation device to
reduce the amount of data that must be exchanged between virtual processes.
For some stimulation devices which produce random signals we must ensure that
all instances in different virtual processes produce identical signals. Thus, these
devices cannot use the random number generator of the virtual process, but have
their own random number generators, initialized with identical seeds.

2.2 Connections

A connection between two nodes is defined by at least four numbers: the gid
of the sending node, the gid of the receiving node, a weight, and a delay. More
complicated connections have weights that change, depending on the activity of
the connected nodes.

Different types of connections can be implemented by classes that derive from
the abstract base class Connector. These can implement arbitrarily complex
dynamics, provided they only depend on the previous state, the time since the
last event, and information available from the target node. The most important
applications are synaptic depression [6] and spike-timing dependent plasticity
(STDP) [7]. An algorithm for STDP suitable for distributed computing can be
found in [8].

111



Because the connections dominate the memory requirements of large net-
works, NEST splits them up such that each virtual process only stores the in-
coming connections to its own nodes. A vector inside each Connector contains
pointers to all local target nodes, along with the delay (integer), and weight
(double). The memory required for connections per MPI process is:

Mconn =
n× c× SC
NMPI

, (2)

where c is the number of outgoing connections per node and SC the memory
per connection. For connections with constant weight and delay, SC = 32 bytes;
plastic synapses require more memory. A network of 106 nodes with 104 con-
nections each thus requires 32 GB connection memory per process if distributed
across 10 MPI processes, but only 3.2 GB per process if distributed across 100
processes.

A ConnectionManager stores the connections to all virtual processes of an
MPI process in a three-dimensional data-structure. The first dimension is the
thread number (virtual process) of the target node. The second dimension is the
gid of the source node, and the third dimension is the index of the connection
type. This memory layout has two advantages: (i) we can construct networks
with heterogeneous synaptic dynamics; (ii) it is optimal for multi-threaded event
delivery (cf. sec. 3.2) and the efficient implementation of synaptic dynamics [8].

3 Network Update and Event Exchange

Conceptually, NEST evaluates the network model on an evenly spaced time-grid
ti := i ·∆ and at each point, the network is in a well-defined state Si. Starting at
an initial state S0, a global state transfer function U(S) propagates the system
from one state to the next, such that St+∆ ← U(St, ∆). As a side effect of U(St),
nodes create events that must be delivered to the target nodes after a delay that
depends on the connection.

NEST evaluates a network model using the following algorithm:

1: T ← 0
2: while T < Tstop do
3: parallel on all vp ∈ NVP do
4: deliver all events due
5: call U(ST ) for all nodes
6: end parallel
7: exchange events between VPs
8: increment network time: T ← T +∆
9: end while

The NVP virtual processes evaluate steps 4 and 5 in parallel, and in step 6 they
synchronize to exchange their events in step 7.

Although NEST uses a discrete event framework, it does not use a global
event-driven update [9, 10]. Event-driven simulation assumes that the communi-
cation between nodes is rare and the update of a node is expensive. This does not
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hold for biological networks, however: If a typical cortical neuron receives spikes
from ∼ 104 other neurons at a rate of ∼ 10 Hz, the average interval between
spike arrivals is ∼ 0.01 ms. However, for most neuron models integration steps
of h ∼ 0.1 ms are sufficient. Thus event-driven update would need one order of
magnitude more updates than time-driven update; see [11] for details.

In the following we describe in more detail (i) how to maximize the time
increment ∆ and (ii) how to collect, exchange, and deliver events between virtual
processes.

3.1 Exploiting Delays for Cache-Efficient Update

Nodes affect each other by exchanging events that arrive at their destination
with a delay dij > 0. The time period ∆ is the largest permissible temporal
desynchronization between any two nodes in the network. ∆ may be increased
as long as this does not change the order of events. This is equivalent to a system
of distributed clocks that synchronize each other with events. Lamport showed
that the smallest transmission delay dmin defines the interval at which clocks
must be synchronized to maintain the order of events [12]. Accordingly, NEST
sets ∆ to dmin. During this period, all nodes are effectively decoupled.

Most neural simulators use the integration step h of the neuron dynamics as
the time increment. Maximizing ∆, typically to ∼ 1 ms, i.e. about 10 times larger
than h, has two advantages: (i) the virtual processes can run independently for
a longer time, thereby reducing the number of synchronizations and thus the
communication overhead; (ii) the state-update of each node can run a few tens
of integration steps en bloc, keeping all required data in the CPU’s L1 cache.

3.2 Global Event Exchange

NEST does not transmit individual events between virtual processes, as there
are far too many. Instead, for each node that produced an event, the follow-
ing information is transmitted: the gid of the sending node and the time at
which the event occurred (address event representation [13]). All other connec-
tion parameters, such as the list of weights, delays and targets, are available at
each virtual process. With this information, the virtual processes reconstruct the
actual events and deliver them to their destinations.

We describe below the buffering and transmission of spike events constrained
to a discrete time grid tn = nh. This scheme is easily extended to spikes at
arbitrary times [11].

Sender-Side Buffering Each MPI process has a three-dimensional buffer
(spike register) to record the nodes that produced a spike-event during the up-
date interval ∆. The first dimension represents the VP, so that they can write
without collisions. The second dimension represents the time of the event with
one entry per integration step h. The third dimension is a list of gids, one for
each spike on a given thread at a given time. The total number of spikes per
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virtual process per update interval is small: even assuming 106 neurons firing at
10 Hz and distributed across 20 VPs, only some 500 spikes occur per VP and
update interval. With 4 threads per MPI process, the spike register occupies less
than 20 kB.

Spike Exchange and Delivery Before spikes are exchanged between MPI
processes, they are copied from the spike register to a communication buffer as
follows: their gids are written to the buffer, ordered by the integration time step
at which the spikes were generated. Sentinels separate spikes generated during
different steps. Since the number of integration steps per update cycle is fixed,
the receiver can reconstruct the spike time from the sentinels. Each process also
maintains buffers to receive the gids from other processes. Once all buffers are
set up, the spike buffers are exchanged between MPI processes by simultaneous
pairwise exchange using CPEX [14–16].

Each virtual process delivers the spikes to its nodes in the parallel step 4 of
the update algorithm (sec. 3). For each entry of the communication buffer, which
now contains both local and remote spikes, it executes the following algorithm.

1: nsentinels ← 0
2: if entry is sentinel then
3: nsentinels ← nsentinels + 1
4: else
5: calculate tspike from network time and nsentinels

6: for all tgt ∈ local targets do
7: send spike time, weight, delay to tgt
8: tgt stores spike in its ring buffer according to delay [14].
9: end for

10: end if

4 Performance

The scaling of large-scale simulations of neural networks depends significantly on
the computational load of the individual neuron. The more complex the neuron,
the better the scaling, as the ratio of local computation to communication costs
increases. We therefore consider the following benchmark to be a hard problem
in the field of distributed neural network simulations: the computation load is
low, because the neuron and synapse models are simple, but the communication
load is high, as the network has a biologically realistic connection density.

Benchmark Simulation The network consists of 12500 leaky integrate-and-
fire neurons (80% excitatory, 20% inhibitory), each receiving input from 10% of
all neurons, mediated by alpha-shaped current-injecting synapses with a synaptic
delay of 1 ms (total number of synapses: 15.6× 106). The neurons are initialized
with random membrane potentials and receive a constant DC input adjusted
to sustain asynchronous irregular firing at 12.7 Hz [17]. For a complete network
specification and numerics, see [11].
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Simulation times were measured on a cluster of Sun X4100 compute nodes
equipped with two dual-core 2.4 GHz AMD Opteron 280 processors, 8GB RAM,
and Mellanox MTS2400 Infiniband interconnect under SuSE Linux Enterprise
Server 9 using the Scali MPI Connect 4.4 library. Threads were bound to CPU
cores using the taskset command.
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Fig. 2. Performance of different parallelization strategies as a function of the number
of virtual processes. Single-thread MPI processes, dashed line; MPI processes with 2
threads, solid line; MPI processes with 4 threads, dash-dotted line. (A) Simulation
time for one biological second in double-logarithmic representation. (B) Speed-up. The
gray diagonal indicates the slope for a linear speed-up in both cases. Data obtained for
simulations of 10 s biological time with a time step of 0.1 ms, averaged over 5 trials.

Results Figure 2 clearly demonstrates that the parallelization strategy signif-
icantly affects the scaling and absolute run-time of the simulation. A purely
MPI-parallelized simulation shows supra-linear speed-up up to 8 virtual pro-
cesses, rapidly saturates, and then undergoes a significant decrease in perfor-
mance. The supra-linear speed-up is due to increasingly efficient caching [14],
and the saturation in performance is due to the communication overhead.

By using a hybrid strategy with two threads per MPI process, such that
both threads are bound to the same CPU, the number of MPI processes is
halved. This reduces the number of send/receive operations per communication
step by a factor of four and results in a performance which is better than the
single-threaded case for numbers of virtual processes greater than eight. The per-
formance of this hybrid strategy remains supra-linear up to 16 virtual processes,
thus substantially reducing the absolute simulation time.

Reducing the number of MPI processes further by increasing the number of
threads per MPI process to four leads to worse performance for small numbers of
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virtual processors. This is due to the fact that memory allocation is performed by
a single thread on each MPI process; as a result of the NUMA architecture, mem-
ory access is sub-optimal for the two threads on the non-allocating processor.
The role of memory access is corroborated by simulating with two threads per
MPI process as above, but binding the threads to different CPUs. This results in
a performance which lies between that of the two-thread same-CPU variant dis-
cussed above and that of the four-thread variant (data not shown). This analysis
is further supported by benchmarks performed on a Sun V40z server with four
dual-core 2.2GHz AMD Opteron 875 processors, in which the threads used dur-
ing simulation were placed at arbitrary cores relative to the thread constructing
the network. Simulation times increased with increasing memory-access distance
between the core used for construction and those used for simulation [18]. The
costs of the sub-optimal memory access outweigh the benefits of decreasing the
number of packets until 16 virtual processes, after which the four-thread variant
becomes the most efficient simulation strategy.

5 Conclusions

Supra-linear scaling for a distributed biological neural network simulation was
demonstrated for the first time in [14]. This result has since been confirmed by
several other laboratories. In the present work we show that a hybrid approach to
neural network simulation, combining multi-threading and distributed comput-
ing techniques, achieves an even better performance than a purely distributed
solution. This suggests that the infrastructure of NEST is appropriate for future
generations of multiprocessor, multi-core clusters.

The problem studied here was chosen to be particularly hard with respect
to communication. In studies with larger neural networks or with more complex
dynamics, NEST performance saturates at much larger numbers of processors:
Simulation time for a network of 105 neurons with 109 synapses, driven by Pois-
son background input, shows supra-linear scaling up to 80 virtual processes on
the same hardware. Other laboratories have shown good scaling of large-scale
simulations on systems with thousands of processors, albeit on less hard prob-
lems [19, 20]. The scaling of NEST on such systems remains to be investigated.

The benchmarking results demonstrate the importance of sophisticated mem-
ory allocation on modern NUMA machines. Future work on NEST will be con-
cerned with improving memory access times in a hybrid message-passing and
multi-threading environment and further optimizing communication with re-
spect to number of packets and latency hiding.
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1 Introduction

To understand the principles of information processing in the brain, we depend
on models with more than 105 neurons and 109 connections [1]. These networks
can be described as graphs of threshold elements that exchange point events.

From the computer science perspective, the key challenges are to represent
the connections succinctly and to transmit events and update neuron states effi-
ciently. We present the Neural Simulation Tool NEST (www.nest-initiative.org,
[2]), a neuronal network simulator which addresses all these requirements. To
simulate very large networks in acceptable time and with acceptable memory
requirements, NEST uses a hybrid strategy, combining distributed simulation
across cluster nodes (MPI) with thread-based simulation on each computer.

2 Network Representation and Update

Conceptually, NEST represents the network as a list of nodes. Nodes are either
neuron models, devices for recording and stimulation, or sub-networks and are
assigned to one of NVP virtual processes, using a simple modulo algorithm [3]. A
virtual process (VP) is a POSIX thread that lives in one of NMPI MPI processes.
Each of the processes contains the same number of threads, NThrd. Device nodes
are created for each virtual process to allow parallel data i/o. This is particularly
important for device nodes that have to deliver large amounts of data to their
targets. To balance the load of all virtual processes, neurons are only created on
the virtual process they are assigned to. On all other virtual processes, they have
light-weight proxies. Each node or proxy only stores the subset of connections
that reach nodes (but not proxies) on the same virtual process. Thus, the network
connections are also distributed, while cache problems are reduced to a minimum.

NEST evaluates the network model on an evenly spaced time-grid ti := i ·∆,
where ∆ is determined by the shortest transmission delay in the system. At each
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point, the network is in a well-defined state Si. Starting at an initial state S0,
a global state transfer function U(S) propagates the system from one state to
the next, such that St+∆ ← U(St). As a side effect of U(St), nodes create events
that must be delivered to the target nodes after a delay that depends on the
connection. The network model in NEST is evaluated by executing the following
algorithm:

1: t← 0
2: while t < Tstop do
3: parallel on all VP do
4: deliver all events due
5: call U(St) for all nodes
6: end parallel
7: exchange events between VPs
8: increment network time: t← t+∆
9: end while

The optimized data structures used for communication are described in [3].

3 Results

We demonstrate the performance of NEST, using a benchmark simulation of a
large biological neural network model. We show that NEST scales supra-linearly
for different combinations of threads and MPI processes.

On a cluster with 96 processor cores in 24 compute nodes and a central
Infiniband switch we achieve real time with a network of 105 neurons with 109

synapses. On this architecture, the MPI Allgather function performs better than
the CPEX algorithm [4]. We are now investigating how different implementa-
tions of Allgather influence the performance of our multi-threaded/distributed
communication scheme.
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The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for 
heterogeneous networks of point neurons or neurons with a small number of compartments. 
It aims at simulations of large neural systems with more than 104 neurons and 107 to 109 
synapses. NEST is implemented in C++ and can be used on a large range of architectures from 
single-core laptops over multi-core desktop computers to super-computers with thousands of 
processor cores. Python (http://www.python.org) is a modern programming language that 
has recently received considerable attention in Computational Neuroscience. Python is easy to 
learn and has many extension modules for scientifi c computing (e.g. http://www.scipy.org). 
In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines 
NEST’s effi cient simulation kernel with the simplicity and fl exibility of Python. Compared to 
NEST’s native simulation language SLI, PyNEST makes it easier to set up simulations, generate 
stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python 
and how it is implemented. With a number of examples, we illustrate how it is used.

Keywords: Python, modeling, integrate-and-fi re neuron, large-scale simulation, scientifi c computing, networks, 

programming

(van Rossum, 2008). To do so, it is common to map the application’s 
functions and data structures to Python classes and functions. This 
approach has the advantage that the coupling between the applica-
tion and Python is as tight as possible. But there is also a drawback: 
Whenever a new feature is implemented in the application, the 
interface to Python must be changed as well.

On many high-performance computers Python is not available 
and we have to preserve NEST’s native simulation language SLI. 
In order to avoid two different interfaces, one to Python and one 
to SLI, we decided to deviate from the standard way of coupling 
applications to Python. Rather than using NEST’s classes, we use 
NEST’s simulation language as the interface: Python sends data 
and SLI commands to NEST and NEST responds with Python 
data structures.

Exchanging data between Python and NEST is easy since 
all important data types in NEST have equivalents in Python. 
Executing NEST commands from Python is also straightfor-
ward: Python only needs to send a string with commands to 
NEST, and NEST will execute them. With this approach, we only 
need to maintain one binary interface to the simulation kernel 
instead of two: Each new feature of the simulation kernel only 
needs to be mapped to SLI and immediately becomes accessible 
in PyNEST without changing its binary interface. This generic 
interpreter interface allows us to program PyNEST’s high-level 
API in Python. This is an advantage, because programming in 
Python is more productive than programming in C++ (Prechelt, 
2000). Python is also more expressive: A given number of lines of 
Python code achieve much more than the same number of lines 
in C++ (McConnell, 2004).

INTRODUCTION
The fi rst user interface for NEST (Gewaltig and Diesmann, 2007; 
Plesser et al., 2007) was the simulation language SLI, a stack-based 
language derived from PostScript (Adobe Systems Inc., 1999). 
However, programming in SLI turned out to be diffi cult to learn 
and users asked for a more convenient programming language for 
NEST.

When we decided to use Python as the new simulation language, 
it was almost unknown in Computational Neuroscience. In fact, 
Matlab (MathWorks, 2002) was far more common, both for simula-
tions and for analysis. Other simulators, like e.g. CSIM (Natschläger, 
2003), already used Matlab as their interface language. Thus, Matlab 
would have been a natural choice for NEST as well.

Python has a number of advantages over commercial soft-
ware like Matlab and other free scripting languages like Tcl/Tk 
(Ousterhout, 1994). First, Python is installed by default on all Linux 
and Mac-OS based computers. Second, Python is stable, portable, 
and supported by a large and active developer community, and has 
a long history in scientifi c fi elds outside the neurosciences (Dubois, 
2007). Third, Python is a powerful interactive programming lan-
guage with a surprisingly concise and readable syntax. It supports 
many programming paradigms such as object-oriented and func-
tional programming. Through packages like NumPy (http://
www.numpy.org) and SciPy (http://www.scipy.org), Python 
supports scientifi c computing and visualization à la Matlab. Finally, 
a number of neuroscience laboratories meanwhile use Python for 
simulation and analysis, which further supports our choice.

Python is powerful at steering other applications and provides 
a well documented interface (API) to link applications to Python 
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NEST users benefi t from the increased productivity. They can 
now take advantage of the large number of extension modules for 
Python. NumPy is the Python interface to the BLAS libraries, the same 
libraries which power Matlab. Matplotlib (http://matplotlib.
sourceforge.net) provides many routines to plot scientifi c data in 
publication quality. Many other packages exist to analyze and visualize 
data. Thus, PyNEST allows users to combine simulation, data analysis, 
and visualization in a single programming language.

In the Section “Using PyNEST”, we introduce the basic modeling 
concepts of NEST. With a number of PyNEST code examples, we 
illustrate how simulations are defi ned and how the results are ana-
lyzed and plotted. In the Section “The Interface Between Python 
and NEST”, we describe in detail how we bind NEST to the Python 
interpreter. In the Section “Discussion”, we discuss our implementa-
tion and analyze its performance. The complete API reference for 
PyNEST is contained in Appendix A. In Appendix B we illustrate 
advanced PyNEST features, using a large scale model.

USING PyNEST
A neural network in NEST consists of two basic element types: Nodes 
and connections. Nodes are either neurons, devices or subnetworks. 
Devices are used to stimulate neurons or to record from them. Nodes 
can be arranged in subnetworks to build hierarchical networks like 
layers, columns, and areas. After starting NEST, there is one empty 
subnetwork, the so-called root node. New nodes are created with the 
command Create(), which takes the model name and optionally the 
number of nodes as arguments and returns a list of handles to the new 
nodes. These handles are integer numbers, called ids. Most PyNEST 
functions expect or return a list of ids (see Appendix A). Thus it is easy 
to apply functions to large sets of nodes with a single function call.

Nodes are connected using Connect(). Connections have a 
confi gurable delay and weight. The weight can be static or dynamic, 
as for example in the case of spike timing dependent plasticity 
(STDP; Morrison et al., 2008). Different types of nodes and con-
nections have different parameters and state variables. To avoid 
the problem of fat interfaces (Stroustrup, 1997), we use dictionar-
ies with the functions GetStatus() and SetStatus() for the 
inspection and manipulation of an element’s confi guration. The 
properties of the simulation kernel are controlled through the com-
mands GetKernelStatus() and SetKernelStatus(). PyNEST 
contains the submodules raster_plot and voltage_trace to visualize 
spike activity and membrane potential traces. They use Matplotlib 
internally and are good templates for new visualization functions. 
However, it is not our intention to develop PyNEST into a toolbox 
for the analysis of neuroscience data; we follow the modularity 
concept of Python and leave this task to others (e.g. NeuroTools, 
http://www.neuralensemble.org/NeuroTools).

EXAMPLE
We illustrate the key features of PyNEST with a simulation of a 
neuron receiving input from an excitatory and an inhibitory popu-
lation of neurons (modifi ed from Gewaltig and Diesmann, 2007). 
Each presynaptic population is modeled by a Poisson generator, 
which generates a unique Poisson spike train for each target. The 
simulation adjusts the fi ring rate of the inhibitory input population 
such that the neurons of the excitatory population and the target 
neuron fi re at the same rate.

First, we import all necessary modules for simulation, analysis 
and plotting.

 1 from nest import *
 2 from scipy.optimize import bisect
 3 import nest.voltage_trace as plot

Second, the parameters for the simulation are set.

 4 t_sim = 100000.0  #[ms] simulation time

 5 n_ex  =  16000    #size of exc. population

 6 n_in  =   4000    #size of inh. population

 7 r_ex  =      5.0  #[Hz] rate of exc. neurons

 8 epsc  =     45.0  #[pA] amplitude of exc.

 9                   #synaptic currents

10 ipsc  =    −45.0  #[pA] amplitude of inh.
11                   #synaptic currents

12 d     =      1.0  #[ms] synaptic delay

13 lower =      5.0  #[Hz] lower bound of the

14                   #search interval

15 upper =     25.0  #[Hz] upper bound of the

16                   #search interval

17 prec  =      0.05 #accuracy goal (in percent 

18                   #of inhibitory rate)

Third, the nodes are created using Create(). Its arguments 
are the name of the neuron or device model and optionally the 
number of nodes to create. If the number is not specifi ed, a single 
node is created. Create() returns a list of ids for the new nodes, 
which we store in variables for later reference.

19 neuron        = Create("iaf_neuron")

20 noise         = Create("poisson_generator", 2)

21 voltmeter     = Create("voltmeter")

22 spikedetector = Create("spike_detector")

Fourth, the excitatory Poisson generator (noise[0]) and the 
voltmeter are confi gured using SetStatus(), which expects a list 
of node handles and a list of parameter dictionaries. The rate of 
the inhibitory Poisson generator is set in line 32. For the neuron 
and the spike detector we use the default parameters.

23 SetStatus([ noise [0]], [{ "rate" : n_ex*r_ex }])

24 SetStatus(voltmeter, [{ "interval" : 1000.0,

25                         "withgid" : True}])

Fifth, the neuron is connected to the spike detector and the 
voltmeter, as are the two Poisson generators to the neuron:

26 Connect(neuron, spikedetector)

27 Connect(voltmeter, neuron)

28 ConvergentConnect(noise, neuron, 

29                   [epsc, ipsc], [d, d])

The command Connect() has different variants. Plain 
Connect() (line 26 and 27) just takes the handles of pre- and 
 postsynaptic nodes and uses the default values for weight and delay. 
ConvergentConnect() (line 28) takes four arguments: A list of 
presynaptic nodes, a list of postsynaptic nodes, and lists of weights 
and delays. It connects all presynaptic nodes to each postsynaptic 
node. All variants of the Connect() command refl ect the direc-
tion of signal fl ow in the simulation kernel rather than the physi-
cal process of inserting an electrode into a neuron. For example, 
neurons send their spikes to a spike detector, thus the neuron is the 
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fi rst argument to Connect() in line 26. By contrast, a voltmeter 
polls the membrane potential of a neuron in regular intervals, thus 
the voltmeter is the fi rst argument of Connect() in line 27. The 
documentation of each model explains the types of events it can 
send and receive.

To determine the optimal rate of the neurons in the inhibitory 
population, the network is simulated several times for different 
values of the inhibitory rate while measuring the rate of the target 
neuron. This is done until the rate of the inhibitory neurons is 
determined up to a given relative precision (prec), such that the 
target neuron fi res at the same rate as the neurons in the excitatory 
population. The algorithm is implemented in two steps:

First, the function output_rate() is defi ned to measure the 
fi ring rate of the target neuron for a given rate of the inhibitory 
neurons.

30 def output_rate(guess):
31     rate = float(abs(n_in*guess))

32     SetStatus([ noise [1]], [{"rate": rate}])

33     SetStatus(spikedetector, [{"n_events": 0}])

34     Simulate(t_sim)

35     n_events = GetStatus(spikedetector, 

36                          "n_events")[0]

37     r_target = n_events*1000.0/t_sim

38     print "r_in = %.4f Hz," % guess, 

39     print "r_target = %.3f Hz" % r_target

40     return r_target

The function takes the fi ring rate of the inhibitory neurons as 
an argument. It scales the rate with the size of the inhibitory popu-
lation (line 31) and confi gures the inhibitory Poisson generator 
(noise[1]) accordingly (line 32). In line 33, the spike-counter of 
the spike detector is reset to zero. Line 34 simulates the network 
using Simulate(), which takes the desired simulation time in mil-
liseconds and advances the network state by this amount of time. 
During the simulation, the spike detector counts the spikes of the 
target neuron and the total number is read out at the end of the 
simulation period (line 35). The return value of output_rate() 
is an estimate of the fi ring rate of the target neuron in Hz.

Second, we determine the optimal fi ring rate of the neurons of 
the inhibitory population using the bisection method.

41 print "Desired target rate: %.2f Hz" % r_ex

42 r = bisect(lambda x: output_rate(x)-r_ex, 
43            lower, upper, rtol=prec)

44 print "Resulting inhibitory rate: %.4f" % r

The SciPy function bisect() takes four arguments: First a 
function whose zero crossing is to be determined. Here, the fi ring 
rate of the target neuron should equal the fi ring rate of the neurons 
of the excitatory population. Thus we defi ne an anonymous func-
tion (using lambda) that returns the difference between the actual 
rate of the target neuron and the rate of the excitatory Poisson 
generator, given a rate for the inhibitory neurons. The next two 
arguments are the lower and upper bound of the interval in which 
to search for the zero crossing. The fourth argument of bisect() 
is the desired relative precision of the zero crossing.

Finally, we plot the target neuron’s membrane potential as a 
function of time.

45 plot.from_device(voltmeter, timeunit="s")

A transcript of the simulation session and the resulting plot are 
shown in Figure 1.

PyNEST ON MULTI-CORE PROCESSORS AND CLUSTERS
NEST has built-in support for parallel and distributed computing 
(Morrison et al., 2005; Plesser et al., 2007): On multi-core proces-
sors, NEST uses POSIX threads (Lewis and Berg, 1997), on computer 
clusters, NEST uses the Message Passing Interface (MPI; Message 
Passing Interface Forum, 1994). Nodes and connections are assigned 
automatically to threads and processes, i.e. the same script can be 
executed single-threaded, multi-threaded, distributed over multiple 
processes, or using a combination of both methods. This naturally 
carries over to PyNEST: To use multiple threads for the simulation, 
the desired number has to be set prior to the creation of nodes and 
connections. Note that the network setup is carried out by a single 
thread, as only a single instance of the Python interpreter exists 

A

jochen@winston:˜$ python balancedneuron.py

NEST 1.9.7865 (C) 2008 The NEST Initiative

Desired target rate: 5.00 Hz

r in=5.0000 Hz, r target=434.580 Hz

r in=25.0000 Hz, r target=0.020 Hz

r in=15.0000 Hz, r target=347.410 Hz

r in=20.0000 Hz, r target=34.350 Hz

r in=22.5000 Hz, r target=0.000 Hz

r in=21.2500 Hz, r target=0.680 Hz

r in=20.6250 Hz, r target=7.160 Hz

...
r in=20.7837 Hz, r target=4.640 Hz

r in=20.7825 Hz, r target=5.000 Hz

Resulting inhibitory rate: 20.7825 Hz

B

FIGURE 1 | Results of the example simulation. (A) The transcript of the 
simulation session shows the intermediate results of r_target as bisect() 
searches for the optimal rate. (B) The membrane potential of the target neuron 

as a function of time. Repeated adjustment of the spike rate of the inhibitory 
population by bisect() results in a convergence of the mean membrane 
potential to −112 mV, corresponding to an output spike rate of 5.0 Hz.
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in each process. Only the simulation takes advantage of multiple 
threads. Distributed simulations can be run via the mpirun com-
mand of the respective MPI implementation. Where, for SLI, one 
would execute mpirun -np n nest simulation.sli to distrib-
ute a simulation onto n processes, one has to call mpirun -np n 
python simulation.py to get the same result with PyNEST. In 
the distributed case, n Python interpreters run in parallel and execute 
the same simulation script. This means that both network setup 
and simulation are parallelized. With third-party tools like IPython 
(http://ipython.scipy.org) or MPI for Python (http://
mpi4py.scipy.org), it is possible to use PyNEST interactively 
even in distributed scenarios. For a more elaborate documentation 
of parallel and distributed simulations with NEST, see the NEST 
user manual (http://www.nest-initiative.org).

THE INTERFACE BETWEEN PYTHON AND NEST
NEST’s built-in simulation language (SLI) is a stack-based language 
in which functions expect their arguments on an operand stack 
to which they also return their results. This means that in every 
expression, the arguments must be entered before the command 
that uses them (reverse polish notation). For many new users, SLI is 
diffi cult to learn and hard to read. This is especially true for math: 
The simple expression α = t · e−t/τ has to be written as /alpha t 
t neg tau div exp mul def in SLI. But SLI is also a high-level 
language where functions can be assembled at run time, stored in 
variables and passed as arguments to other functions (functional 
programming; Finkel, 1996). Powerful indexing operators like 
Part and functional operators like Map, together with data types 
like heterogeneous arrays and dictionaries, allow a compact and 
expressive formulation of algorithms.

Stack-based languages are often used as intermediate languages 
in compilers and interpreters (Aho et al., 1988). This inspired 
us to couple NEST and Python using SLI as an intermediate 
language.

THE PyNEST LOW-LEVEL INTERFACE
The low-level API of PyNEST is implemented in C/C++ using the 
Python C-API (van Rossum, 2008). It exposes only three func-
tions to Python, and has private routines for converting between 
SLI data types and their Python equivalents. The exposed func-
tions are:

1. sli_push(py_object), which converts the Python object 
py_object to the corresponding SLI data type and pushes it 
onto SLI’s operand stack.

2. sli_pop(), which removes the top element from SLI’s ope-
rand stack and returns it as a Python object.

3. sli_run(slicommand), which uses NEST’s simulation lan-
guage interpreter to execute the string slicommand. If the 
command requires arguments, they have to be present on SLI’s 
operand stack or must be part of slicommand. After the com-
mand is executed, its return values will be on the interpreter’s 
operand stack.

Since these functions provide full access to the simulation lan-
guage interpreter, we can now control NEST’s simulation kernel 
without explicit Python bindings for all NEST functions. This 
interface also provides a natural way to execute legacy SLI code 

from within a PyNEST script by just using the command sli_
run("(legacy.sli) run"). However, it does not provide any 
benefi ts over plain SLI from a syntactic point of view: All simulation 
specifi c code still has to be written in SLI. This problem is solved 
by a set of high-level functions.

THE PyNEST HIGH-LEVEL INTERFACE
To allow the researcher to defi ne, run and evaluate NEST simula-
tions using only Python, PyNEST offers convenient wrappers for 
the most important functions of NEST. These wrappers are imple-
mented on top of the low-level API and execute appropriate SLI 
expressions. Thus, at the level of PyNEST, SLI is invisible to the user. 
Each high-level function consists essentially of three parts:

1. The arguments of the function are put on SLI’s operand 
stack.

2. One or more SLI commands are executed to perform the desi-
red action in NEST.

3. The results (if any) are fetched from the operand stack and 
returned as Python objects.

A concrete example of the procedure is given in the following 
listing, which shows the implementation of Create():

1 def Create(model, n=1):
2 sli_run("/%s" % model)

3 sli_push(n)

4 sli_run("CreateMany")

5 lastid = sli_pop()

6 return range(lastid - n + 1, lastid + 1)

In line 2, we fi rst transfer the model name to NEST. Model names 
in NEST have to be of type literal, a special symbol type that is not 
available in Python. Because of this, we cannot use sli_push() for 
the data transfer, but have to use sli_run(), which executes a given 
command string instead of just pushing it onto SLI’s stack. The 
command string consists of a slash followed by the model name, 
which is interpreded as a literal by SLI. Line 3 uses sli_push() 
to transmit the number of nodes (n) to SLI. The nodes are then 
created by CreateMany in line 4, which expects the model name 
and number of nodes on SLI’s operand stack and puts the id of 
the last created node back onto the stack. The id is retrieved in 
line 5 via sli_pop(). To be consistent with the convention that 
all PyNEST functions work with lists of nodes, we build a list of 
all created nodes’ ids, which is returned in line 6.

A sequence diagram of the interaction between the different 
software layers of PyNEST is shown in Figure 2 for a call to the 
Create() function.

DATA CONVERSION
From Python to SLI
The data conversion between Python and SLI exploits the fact that 
most data types in SLI have an equivalent type in Python. The func-
tion sli_push() calls PyObjectToDatum() to convert a Python 
object py_object to the corresponding SLI data type (see  in 
Figure 2). PyObjectToDatum() determines the type of py_object 
in a cascade of type checks (e.g. PyInt_Check(), PyString_
Check(), PyFloatCheck()) as described by van Rossum (2008). 
If a type check succeeds, the Python object is used to create a new 
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SLI Datum of the respective type. PyObjectToDatum() is called 
recursively on the elements of lists and dictionaries. The listing 
below shows how this technique is used for the conversion of the 
Python type float and for NumPy arrays of doubles:

 1 Datum* PyObjectToDatum(PyObject *py_object)

 2 {

 3    if (PyFloat_Check(py_object)) //float?
 4    {

 5     return new DoubleDatum(PyFloat_AsDouble(
 6                                 py_object));

 7    }

 8

 9    if (PyArray_Check(py_object)) //NumPy array?
10    {

11     int size = PyArray_Size(py_object);
12     PyArrayObject *array;

13     array = (PyArrayObject*) py_object;

14     assert(array != 0);

15     switch (array->descr->type_num)
16     {

17      case PyArray_DOUBLE:
18      {

19        double *begin = (double*) array->data;
20        return new DoubleVectorDatum(
21            new std::vector<double>(
22                  begin, begin+size));
23       }

24      //cases for NumPy arrays of other types

25     }

26    }

27    //checks for other supported Python types

28 }

From SLI to Python
To convert a SLI data type to the corresponding Python type, we can 
avoid the cascade of type checks, since all SLI data types are derived 
from a common base class, called Datum. The C++  textbook solution 
would add a pure virtual conversion function  convert() to the class 
Datum. Each derived class (e.g. DoubleDatum, DoubleVectorDatum) 
then overloads this function to implement its own conversion to the 
corresponding Python type. This approach is shown for the SLI 
type DoubleDatum in the following listing. The function get() is 
implemented in each Datum and returns its data member.

1 PyObject*

2 DoubleDatum::convert()

3 {

4   return PyFloat_FromDouble(get());

5 }

However, this solution would make SLI’s type hierarchy (and 
thus NEST) depend on Python. To keep NEST independent of 
Python, we split the implementation in two parts: The fi rst is 
Python-unspecifi c and resides in the NEST source code (Figure 3, 
left rectangle), the second is Python-specifi c and defi ned in the 
PyNEST source code (Figure 3, right rectangle).

We move the Python-specifi c conversion code from convert() 
to a new function convert_me(), which is then called by the 

FIGURE 2 | Sequence diagram showing the interaction between Python 

and SLI. A call to the PyNEST high-level function Create() fi rst transmits 
the model name to SLI using sli_run(). It is converted to the SLI type 
literal by the interpreter ( ). Next, it pushes the number of nodes (10) to 
SLI using sli_push(). The PyNEST low-level API converts the argument 
to a SLI datum ( ) and pushes it onto SLI’s operand stack. Next, it 

executes appropriate SLI code to create the nodes of type iaf_neuron in 
the simulation kernel. Finally it retrieves the results of the NEST 
operations using sli_pop(), which converts the data back to a Python 
object ( ). The result of the operation in SLI (the id of the last node created) 
is used to create a list with the ids of all new nodes, which is returned to 
Python.
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interface function use_converter(). This function is now inde-
pendent of Python:

1 void
2 Datum::use_converter(DatumConverter& converter)

3 {

4   converter.convert_me(* this);
5 }

The function use_converter() is defi ned in the base class 
Datum and inherited by all derived classes. It calls the convert_
me() function of converter that matches the type of the derived 
Datum. NEST’s class DatumConverter is an abstract class that 
defi nes a pure virtual function convert_me(T&) for each SLI 
type T:

1 class DatumConverter
2 {

3  public:
4   virtual void convert_me(Datum&);
5   virtual void convert_me(DoubleDatum&)=0;
6   virtual void convert_me(DoubleVectorDatum&)=0;
7   //convert_me() function for other Datums

8 };

The Python-specifi c part of the conversion is encapsu-
lated in the class DatumToPythonConverter, which derives 
from DatumConverter and implements the convert_me() 
functions to actually convert the SLI types to Python objects. 
DatumToPythonConverter::convert_me() takes a reference 
to the Datum as an argument and is overloaded for each SLI type. It 
stores the result of the conversion in the class variable py_object. 
An example for the conversion of DoubleDatum is given in the 
following listing:

1 void
2 DatumToPythonConverter::convert_me(

3     DoubleDatum& dd)

4 {

5   py_object = PyFloat_FromDouble(dd.get());

6 }

DatumToPythonConverter also provides the function con-
vert(), which converts a given Datum d to a Python object by 
calling d.use_converter() with itself as an argument. It is used 
in the implementation of sli_pop() (see  in Figure 2). After the 
call to use_converter(), the result of the conversion is available 
in the member variable py_object, and is returned to the caller:

1 PyObject*

2 DatumToPythonConverter::convert(Datum& d)

3 {

4   d.use_converter(*this);
5   return py_object;
6 }

In the Computer Science literature, this method of decoupling 
different parts of program code is called the acyclic visitor pattern 
(Martin et al., 1998). Our implementation is based on Alexandrescu 
(2001).

As an example, the diagram in Figure 4 illustrates the 
sequence of events in sli_pop(): First, sli_pop() retrieves 
a SLI Datum d from the operand stack (not shown). Second, it 
creates an instance of DatumToPythonConverter and calls its 
convert() function, which then passes itself as visitor to the 
use_ converter() function of d. Datum::use_converter() 
calls the DatumToPythonConverter’s convert_me() function 
that matches the type of d. The function convert_me() then cre-
ates a new Python object from the data in d and stores it in the 
DatumToPythonConverter’s member variable py_object, 
which is returned to sli_pop().

NumPy support
To make PyNEST depend on NumPy only if it is available, we 
use conditional compilation based on the preprocessor macro 
HAVE_NUMPY, which is determined during the confi guration of 
PyNEST prior to compilation. For example, the following listing 
shows the implementation of the DatumToPythonConverter:: 
convert_me() function to convert homogeneous arrays of  doubles 
from SLI to Python. If NumPy is available during compilation, its 

FIGURE 3 | Class diagram for the acyclic visitor pattern used to convert SLI 

types to Python types. The left rectangle contains classes belonging 
to NEST, the right rectangle contains classes that are part of PyNEST. All 
SLI data types are derived from the base class Datum and inherit its function 

use_converter(). The class DatumConverter is the base class of 
DatumToPythonConverter. The actual data conversion is carried out in 
one of DatumToPythonConverter’s convert_me() functions. Virtual 
functions are typeset in italics.
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 homogeneous array type is used to store the data. Without NumPy, 
a Python list is used instead.

 1 void
 2 DatumToPythonConverter::convert_me(

 3     DoubleVectorDatum& d)

 4 {

 5   int dims = d->size();
 6 #ifdef HAVE_NUMPY
 7     PyArrayObject* array;

 8     array = (PyArrayObject*)

 9       PyArray_FromDims(1, &dims, PyArray_DOUBLE);

10     std::copy(d->begin(), d->end(),
11             (double*) array->data);
12     py_object = (PyObject*) array;

13 #else
14     py_object = PyList_New(dims);

15     for(int i=0; i<dims; i++)
16     PyList_SetItem(py_object, i, 

17                    PyFloat_FromDouble((*d)[i]));

18 #endif
19 }

ERROR HANDLING
Error handling in NEST is implemented using C++ exceptions 
that are propagated up the calling hierarchy until a suitable error 
handler catches them. In this section, we describe how we extend 
this strategy to PyNEST.

PyNEST executes SLI code using sli_run() as described in the 
Section “The PyNEST High-Level Interface”. However, the high-
level API does not call sli_run() directly, but rather through the 
wrapper function catching_sr():

1 def catching_sr(cmd):
2     sli_run("{" + cmd + "} runprotected")
3     if not sli_pop():   #cmd caused an error

4        errorname = sli_pop()

5        commandname = sli_pop()

6        raise NESTError("NEST error: " + 
7                        errorname + " in " + 
8                        commandname)

In line 2, catching_sr() converts the command string cmd to 
a SLI procedure by adding braces. It then calls the SLI command 
runprotected (see listing below), which executes the procedure 
in a stopped context (PostScript; Adobe Systems Inc., 1999). If an 
error occurs, stopped leaves the name of the failed command on 
the stack and returns true. In this case, runprotected extracts the 
name of the error from SLI’s error dictionary, converts it to a string, 
and puts it back on the operand stack, followed by false to indicate 
the error condition to the caller. Otherwise, true is put on the stack. 
In case of an error, catching_sr() uses both the name of the 
command and the error to raise a Python exception (NESTError), 
which can be handled by the user’s simulation code. The following 
listing shows the implementation of runprotected:

 1 /runprotected

 2 {

 3   stopped dup
 4   {

 5     errordict /commandname get cvs
 6     % tell NEST that the error was handled

 7     errordict /newerror false put
 8   } if
 9   not
10 } def

Forwarding the original NEST errors to Python has the advan-
tage that PyNEST functions do not have to check their arguments, 
because the underlying NEST functions already do. This makes the 
code of the high-level API more readable, while at the same time, 
errors are raised as Python exceptions without requiring additional 

FIGURE 4 | Sequence diagram of the acyclic visitor pattern for data 

conversion from SLI to Python. For the conversion of a SLI datum d, sli_
pop() creates an instance of DatumToPythonConverter. It then calls the 
DatumToPythonConverter’s convert() function, which passes itself as a 

visitor to the use_converter() function of d. Datum::use_converter() 
calls the DatumToPythonConverter’s convert_me() function that matches 
d’s type. convert_me() creates a new Python object from the data contained 
in d. The new Python object is returned to sli_pop().
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code. Moreover, this results in consistent error messages in NEST 
and PyNEST.

DISCUSSION
The previous sections describe the usage and implementation of 
PyNEST. Here we discuss consequences and limitations of the 
PyNEST implementation.

PERFORMANCE
The use of PyNEST entails a certain computational overhead over 
pure SLI-operated NEST. This overhead can be split into two main 
components:

1. Call overhead because of using SLI over direct access to the 
NEST kernel.

2. Data exchange between Python and NEST.

For most real-world simulations, the fi rst is negligible, since 
the number of additional function calls is small. In practice, most 
overhead is caused by the second component, which we can reduce 
by minimizing the number of data conversions. For an illustration 
of the technique, see the following two listings that both add up 
a sequence of numbers in SLI. The fi rst creates the sequence of 
numbers in Python, pushes them to SLI one after the other and 
lets SLI add them. Executing it takes approx. 15 s on a laptop with 
an Intel Core Duo processor at 1.83 GHz.

1 sli_push(0)

2 for i in range(1, 100001):
3     sli_push(i)

4     sli_run("add")

The second version computes the same result, but instead of 
creating the sequence in Python, it is created in SLI:

1 sli_run("0 1 1 100000 { add } for")

Although Python loops are about twice as fast as SLI loops, 
this version takes only 0.6 s, because of the reduced number of 
data conversions and, to a minor extent, the repeated parsing of 
the command string and the larger number of function calls in 
the fi rst version.

The above technique is used in the implementation of the 
PyNEST high-level API wherever possible. The same technique is 
also applied for other loop-like commands (e.g. Map) that exist in 
both interpreters. However, it is important to note that the total run 
time of the simulation is often dominated by the actual creation and 
update of nodes and synapses, and by event delivery. These tasks 
take place inside of the optimized C++ code of NEST’s simulation 
kernel, hence the choice between SLI or Python has no impact on 
performance.

INDEPENDENCE
One of the design decisions for PyNEST was to keep NEST inde-
pendent of third-party software. This is important because NEST is 
used on architectures, where Python is not available or only avail-
able as a minimal installation. Moreover, since NEST is a long term 
project that has already seen several scripting languages and graph-
ics libraries coming and going, we do not want to introduce a hard 
dependency on one or the other. The stand-alone version of NEST 

can be compiled without any third-party libraries. Likewise, the 
implementation of PyNEST does not depend on anything except 
Python itself. The use of NumPy is recommended, but optional. 
The binary part of the interface is written by hand and does not 
depend on interface generators like SWIG (http://www.swig.
org) or third-party libraries like Boost.Python (http://www.
boost.org). In our opinion, this strategy is important for the 
long-term sustainability of our scientifi c software.

EXTENSIBILITY
NEST can never provide all models and functions needed by every 
researcher. Extensibility is hence important.

Due to the asymmetry of the PyNEST interface (see “Assymmetry 
of the Interface”), neuron models, devices and synapse models 
have to be implemented in C++, the language of the simulation 
kernel. However, new analysis functions and connection routines 
can be implemented in either Python, SLI or C++, depending on the 
performance required and the skills of the user. The implementa-
tion in Python is easy, but performance may be limited. However, 
this approach is safe, as the real functionality is performed by SLI 
code, which is often well tested. To improve the performance, the 
implementation can be translated to SLI. This requires knowledge 
of SLI in addition to Python. Migrating the function down to the 
C++ level yields the highest performance gain, but requires knowl-
edge of C++ and the internals of the simulation kernel.

Since the user can choose between three languages, it is easy to 
extend PyNEST, while at the same time, it is possible to achieve 
high performance if necessary. The hierarchy of languages also 
provides abstraction layers, which make it possible to migrate 
the implementation of a function between the different lan-
guages, without affecting user code. The intermediate layer of 
SLI allows the decoupling of the development of the simula-
tion kernel from the development of the PyNEST API. This is 
also helpful for developers of abstraction libraries like PyNN 
(Davison et al., 2008), who only need limited knowledge of the 
simulation kernel.

ASSYMMETRY OF THE INTERFACE
Our implementation of PyNEST is asymmetric in that SLI code 
can be executed from Python, but NEST cannot respond, except for 
error handling and data exchange. Although this is suffi cient to run 
NEST simulations from within a Python session, it could be ben-
efi cial to allow NEST to execute Python code: The user of PyNEST 
already knows the Python programming language, hence it might 
be easier to extend NEST in Python rather than to modify the C++ 
code of the simulation kernel. SciPy, NumPy and other packages 
provide well tested implementations of mathematical functions 
and numerical algorithms. Together with callback functions, these 
libraries would allow rapid prototyping of neuron and synapse 
models or to initialize parameters of neuron models or synapses 
according to complicated probability distributions: Python could 
be the middleware between NEST’s simulation kernel and the 
numerical package. Using online feedback from the simulation, 
callback functions could also control simulations. Moreover, with a 
symmetric interface and appropriate Python modules it would be 
easier to add graphical user interfaces to NEST, along with online 
display of observables, and experiment management.
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Different implementations of the symmetric interface are pos-
sible: One option is to pass callback functions from Python to NEST. 
Another option is to further exploit the idea that the “language is 
the protocol”. In the same way as PyNEST generates SLI code, NEST 
would emit code for Python. Already Harrison and McLennan 
(1998) mention this technique, and in experimental implementa-
tions it was used successfully to symmetrically couple NEST with 
Tcl/Tk (Diesmann and Gewaltig, 2002), Mathematica, Matlab and 
IDL. The fact that none of these interfaces is still maintained con-
fi rms the conclusions of the Section “Independence”.

LANGUAGE CONSIDERATIONS
At present, PyNEST maps NEST’s capabilities to Python. Further 
advances in the expressiveness of the language may be easier to 
achieve at the level of Python or above (e.g. PyNN; Davison et al., 
2008) without a counterpart in SLI. An example for this is the sup-
port of units for physical quantities as available in SBML (Hucka 
et al., 2002) or Brian (Goodman and Brette, 2008).

More generally, the development of simulation tools has not kept 
up with the increasing complexity of network models. As a conse-
quence the reliable documentation of simulation studies is chal-
lenging and laboratories notoriously have diffi culties in reproducing 
published results (Djurfeldt and Lansner, 2007). One component of 
a solution is the ability to concisely formulate simulations in terms 
of the neuroscientifi c problem domain like connection topologies 
and probability distributions. At present little research has been car-
ried out on the particular design of such a language (Davison et al., 
2008; Nordlie et al., 2008), but a general purpose high-level language 
interface to the simulation engine is a fi rst step towards this goal.

APPENDIX
A. PyNEST API REFERENCE
Models
Models(mtype="all", sel=None): Return a list of all available 

models (nodes and synapses). Use mtype="nodes" to only see 
node models, mtype="synapses" to only see synapse models. 
sel can be a string, used to fi lter the result list and only return 
models containing it.

GetDefaults(model): Return a dictionary with the default 
parameters of the given model, specifi ed by a string.

SetDefaults(model, params): Set the default parameters of the 
given model to the values specifi ed in the params dictionary.

GetStatus(model, keys=None): Return a dictionary with sta-
tus information for the given model. If keys is given, a value 
is returned instead. keys may also be a list, in which case a list 
of values is returned.

CopyModel(existing, new, params=None): Create a new 
model by copying an existing one. Default parameters can be 
given as params, or else are taken from existing.

Nodes
Create(model, n=1, params=None): Create n instances of type 

model in the current subnetwork. Parameters for the new nodes 
can be given as params (a single dictionary, or a list of dictionar-
ies with size n). If omitted, the model’s defaults are used.

GetStatus(nodes, keys=None): Return a list of parameter 
dictionaries for the given list of nodes. If keys is given, a list 

of values is returned instead. keys may also be a list, in which 
case the returned list contains lists of values.

SetStatus(nodes, params, val=None): Set the parameters 
of the given nodes to params, which may be a single diction-
ary, or a list of dictionaries of the same size as nodes. If val 
is given, params has to be the name of a property, which is set 
to val on the nodes. val can be a single value, or a list of the 
same size as nodes.

Connections
Connect(pre, post, params=None, delay=None, model=

"static_synapse"): Make one-to-one connections of type 
model between the nodes in pre and the nodes in post. pre 
and post have to be lists of the same length. If params is given 
(as a dictionary or as a list of dictionaries with the same size as 
pre and post), they are used as parameters for the connections. 
If params is given as a single fl oat, or as a list of fl oats of the 
same size as pre and post, it is interpreted as weight. In this 
case, delay also has to be given (as a fl oat, or as a list of fl oats 
with the same size as pre and post).

ConvergentConnect(pre, post, weight=None, delay=None, 

model="static_synapse"): Connect all nodes in pre to each 
node in post with connections of type model. If weight is 
given, delay also has to be given. Both can be specifi ed as a 
fl oat, or as a list of fl oats with the same size as pre.

RandomConvergentConnect(pre, post, n, weight=None, 

delay=None, model="static_synapse"): Connect n ran-
domly selected nodes from pre to each node in post with connec-
tions of type model. Presynaptic nodes are drawn independently 
for each postsynaptic node. If weight is given, delay also has 
to be given. Both can be specifi ed as a fl oat, or as a list of fl oats 
of size n.

DivergentConnect(pre, post, weight=None, delay=None, 

model="static_synapse"): Connect each node in pre to all 
nodes in post with connections of type model. If weight is 
given, delay also has to be given. Both can be specifi ed as a fl oat, 
or as a list of fl oats with the same size as post.

RandomDivergentConnect(pre, post, n, weight=None, 

delay=None, model="static_synapse"): Connect each 
node in pre to n randomly selected nodes from post with con-
nections of type model. If weight is given, delay also has to 
be given. Both can be specifi ed as a fl oat, or as a list of fl oats 
of size n.

Structured networks
CurrentSubnet(): Return the id of the current subnetwork.
ChangeSubnet(subnet): Make subnet the current subnetwork.
GetLeaves(subnet): Return the ids of all nodes under subnet 

that are not subnetworks.
GetNodes(subnet): Return the complete list of subnet’s children 

(including subnetworks).
GetNetwork(subnet, depth): Return a nested list of subnet’s 

children up to depth (including subnetworks).
LayoutNetwork(model, shape, label=None, customdict=

None): Create a subnetwork of shape shape that contains 
nodes of type model. label is an optional name for the sub-
network. If present, customdict is set as custom dictionary of 
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the subnetwork, which can be used by the user to store custom 
information.

BeginSubnet(label=None, customdict=None): Create a new 
subnetwork and change into it. label is an optional name for 
the subnetwork. If present, customdict is set as custom diction-
ary of the subnetwork, which can be used by the user to store 
custom information.

EndSubnet(): Change to the parent subnetwork and return the 
id of the subnetwork just left.

Simulation control
Simulate(t): Simulate the network for t milliseconds.
ResetKernel(): Reset the simulation kernel. This will destroy the 

network as well as all custom models created with CopyModel(). 
The parameters of built-in models are reset to their defaults. 
Calling this function is equivalent to restarting NEST.

ResetNetwork(): Reset all nodes and connections to the defaults 
of their respective model.

SetKernelStatus(params): Set the parameters of the simula-
tion kernel to the ones given in params.

GetKernelStatus(): Return a dictionary with the parameters 
of the simulation kernel.

PrintNetwork(depth=1, subnet=None): Print the network 
tree up to depth, starting at subnet. If subnet is omitted, the 
current subnetwork is used instead.

B. ADVANCED EXAMPLE
In the Section “Using PyNEST”, we introduced the main features 
of PyNEST with a short example. This section contains a simula-
tion of a balanced random network of 10,000 excitatory and 2,500 
inhibitory integrate-and-fi re neurons as described in Brunel (2000). 
We start with importing the required modules.

1 from nest import *
2 import nest.raster_plot as plot
3 import time

We store the current time at the start of the simulation.

4 startbuild = time.time()

Next, we use SetKernelStatus() to set the temporal resolu-
tion for the simulation to 0.1 ms.

5 SetKernelStatus({"resolution": 0.1})

We defi ne variables for the simulation duration, the network 
size and the number of neurons to be recorded.

6 simtime =   500.0 #[ms] Simulation time

7 NE      = 10000   #number of exc. neurons

8 NI      =  2500   #number of inh. neurons

9 N_rec   =    50   #record from 50 neurons

The following are the parameters of the integrate-and-fi re neu-
ron that deviate from the defaults.

10 tauMem = 20.0 #[ms] membrane time constant

11 theta  = 20.0 #[mV] threshold for firing

12 t_ref  =  2.0 #[ms] refractory period

13 E_L    =  0.0 #[mV] resting potential

The synaptic delay and weights and the number of afferent syn-
apses per neuron are assigned to variables. By choosing the relative 

strength of inhibitory connections to be | J
in

 | / | J
ex

 | = g = 5.0, the 
network is in the inhibition-dominated regime.

14 delay   = 1.5             #[ms] synaptic delay

15 J_ex    = 0.1             #[mV] exc. synaptic strength

16 g       = 5.0             #ratio between inh. and exc.

17 J_in    = −g*J_ex         #[mV] inh. synaptic strength
18 epsilon = 0.1             #connection probability

19 CE      = int(epsilon*NE) #exc. synapses/neuron

20 CI      = int(epsilon*NI) #inh. synapses/neuron

To reproduce Figure 8C from Brunel (2000), we choose param-
eters for asynchronous, irregular fi ring: νθ denotes the external 
Poisson rate which results in a mean free membrane potential equal 
to the threshold. We set the rate of the external Poisson input to 
ν

ext
 = ηνθ = 2νθ.

21 eta    = 2.0                 #fraction of ext. input

22 nu_th  = theta/(J_ex*tauMem) #[kHz] ext. rate

23 nu_ext = eta*nu_th           #[kHz] exc. ext. rate

24 p_rate = 1000.0*nu_ext       #[Hz] ext. Poisson rate

In the next step we set up the populations of excitatory 
(nodes_ex) and inhibitory (nodes_in) neurons. The neurons 
of both pools have identical parameters, which are confi gured 
for the model with SetDefaults(), before creating instances 
with Create().

25 print "Creating network nodes …"

26 SetDefaults("iaf_psc_delta", {"C_m"  : tauMem,

27                               "tau_m": tauMem,

28                               "t_ref": t_ref,

29                               "E_L"  : E_L,

30                               "V_th" : theta})

31 nodes_ex = Create("iaf_psc_delta", NE)

32 nodes_in = Create("iaf_psc_delta", NI)

33 nodes = nodes_ex+nodes_in

Next, a Poisson spike generator (noise) is created and its 
rate is set. We use it to provide external excitatory input to the 
network.

34 noise = Create("poisson_generator", 
35                 params={"rate": p_rate})

The next paragraph creates the devices for recording spikes from 
the excitatory and inhibitory population. The spike detectors are 
confi gured to record the spike times and the id of the sending 
neuron to a fi le.

36 SetDefaults("spike_detector", {"withtime": True,

37                                "withgid" : True,

38                                "to_file" : True})

39 espikes = Create("spike_detector")

40 ispikes = Create("spike_detector")

Next, we use CopyModel() to create copies of the synapse model 
"static_synapse", which are used for the excitatory and inhibi-
tory connections.

41 SetDefaults("static_synapse", {"delay": delay})

42 CopyModel("static_synapse", "excitatory",

43           {"weight": J_ex})

44 CopyModel("static_synapse", "inhibitory", 

45           {"weight": J_in})
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The following code connects neurons and devices. 
DivergentConnect() connects one source node with each of 
the given target nodes and is used to connect the Poisson genera-
tor (noise) to the excitatory and the inhibitory neurons (nodes). 
ConvergentConnect() is used to connect the fi rst N_rec excita-
tory and inhibitory neurons to the corresponding spike detectors.

46 print "Connecting network …"

47 DivergentConnect(noise, nodes, 

48                  model="excitatory")

49 ConvergentConnect(nodes_ex[:N_rec], espikes, 

50                   model="excitatory")

51 ConvergentConnect(nodes_in[:N_rec], ispikes, 

52                   model="excitatory")

The following lines connect the neurons with each other. The 
function RandomConvergentConnect() draws CE presynaptic 
neurons randomly from the given list (fi rst argument) and con-
nects them to each postsynaptic neuron (second argument). The 
presynaptic neurons are drawn repeatedly and independent for 
each postsynaptic neuron.

53 RandomConvergentConnect(nodes_ex, nodes, CE, 

54                         model="excitatory")

55 RandomConvergentConnect(nodes_in, nodes, CI, 

56                         model="inhibitory")

To calculate the duration of the network setup later, we again 
store the current time.

57 endbuild = time.time()

We use Simulate() to run the simulation.

58 print "Simulating", simtime, "ms …"

59 Simulate(simtime)

Again, we store the time to calculate the runtime of the simula-
tion later.

60 endsimulate = time.time()

The following code calculates the mean fi ring rate of the excita-
tory and the inhibitory neurons, determines the total number of 

synapses, and the time needed to set up the network and to simulate 
it. The fi ring rates are calculated from the total number of events 
received by the spike detectors. The total number of synapses is avail-
able from the status dictionary of the respective synapse models.

61 events_ex   = GetStatus(espikes, "n_events")[0]

62 rate_ex     = event_ex/simtime*1000.0/N_rec

63 events_in   = GetStatus(ispikes, "n_events")[0]

64 rate_in     = events_in/simtime*1000.0/N_rec

65 synapses_ex = GetStatus("excitatory", 

66                         "num_connections")

67 synapses_in = GetStatus("inhibitory", 

68                         "num_connections")

69 synapses    = synapses_ex+synapses_in
70 build_time  = endbuild−startbuild
71 sim_time    = endsimulate−endbuild

The next lines print a summary with network and runtime 
statistics.

72 print "Brunel network simulation using PyNEST:"
73 print "Number of neurons :", len(nodes)
74 print "Number of synapses:", synapses
75 print "       Exitatory  :", synapses_ex
76 print "       Inhibitory :", synapses_in
77 print "Excitatory rate   : %.2f Hz" % rate_ex

78 print "Inhibitory rate   : %.2f Hz" % rate_in

79 print "Building time     : %.2f s" % build_time

80 print "Simulation time   : %.2f s" % sim_time

Finally, nest.raster_plot is used to visualize the spikes of the 
N_rec selected excitatory neurons, similar to Figure 8C of Brunel 
(2000).

81 plot.from_device(espikes, hist=True)

The resulting plot is shown in Figure 5 together with a transcript 
of the simulation session. The simulation was run on a laptop with 
an Intel Core Duo processor at 1.83 GHz and 1.5 GB of RAM.
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jochen@winston:˜$ python brunel.py

NEST 1.9.7753 (C) 2008 The NEST Initiative

Creating network nodes ...

Connecting network ...

Simulating 500.0 ms ...

Brunel network simulation using PyNEST:

Number of neurons : 12500

Number of synapses: 15637600

Excitatory : 12512600

Inhibitory : 3125000

Excitatory rate : 31.52 Hz

Inhibitory rate : 31.96 Hz

Building time : 34.06 s

Simulation time : 78.88 s

B

FIGURE 5 | Results of the balanced random network simulation. (A) The 
transcript of the simulation session shows the output during network setup and 

the summary printed at the end of the simulation. (B) Spike raster (top) and 
spike time histogram (bottom) of the N_rec recorded excitatory neurons.
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• I designed the mapping of data types between Python and SLI.

• Together with Moritz Helias, I adapted the visitor pattern for the type conversion from
SLI to Python.

• I designed a framework for exception handling for the interface enabling the propagation
of C++ and SLI exceptions to the Python level.

• I designed and implemented the API for the high-level interface.

• I developed a testsuite for the interface which is integrated with the SLI-level testsuite.

• I developed a framework to integrate a Python-style build process (distutils) with the
build process of NEST (autotools).

• I coordinated the preparation of the manuscript, wrote the text and created the figure.

• I coordinated the manuscript revisions towards acceptance as the corresponding author.

• I presented PyNEST at the FACETS student course “modeling for beginners” in 2007
(tutor), at the course “Python in computational neuroscience” 2008 (tutor), at the INCF
2008 congress (poster), at the CNS 2009 (invited talk), and at the INCF 2009 congress
(demo session).
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With PyNEST, stimulus generation, simulation and data analysis can
be performed in a single programming language.

NEST1 is a simulator for large networks of spiking neurons, and
has a long history of use in computational neuroscience for the
simulation of large spiking networks. It runs on many different
architectures (ranging from normal desktop computers to com-
puter clusters with thousands of processor cores2), is written in
CCC, and has a built-in simulation language interpreter (SLI) to
help the user set up the network. NEST’s simulation language is
stack-based and inspired by PostScript,3 which means that each
function expects its arguments to be on the stack and returns
results back to it. SLI is a high-level language with functional
operators like Map and data-structures like associative arrays.
However, learning SLI has turned out to be difficult for many
users: a more convenient simulation language was required.

When we were thinking about a new scripting interface for
NEST, Python was almost unknown in computational neuro-
science. However, we noticed a strong trend towards it in the
scientific community in general.4 Python has a number of advan-
tages over commercial programming environments like Matlab5

or Mathematica:6 it is installed on almost all Linux and MacOS-
based computers, is free, and is being developed by an active
community. Thanks to the multitude of packages for scientific
computing (http://www.scipy.org), Python can be used for
stimulus generation, data analysis, and plotting in the same way
its commercial alternatives can. As a result, a number of other
neuroscience laboratories are also using Python.7

The usual approach to creating Python interfaces for existing
software is to create a wrapper library that exposes all data struc-
tures and functions of the application to Python. We decided to
deviate from this approach and keep the existing SLI interface
as an intermediate layer between the new user interface and
the simulation engine. The reason for this is threefold: first, a
lot of SLI code has already been written, and we did not want
to render this code useless with newer versions of NEST. Sec-
ond, Python is not yet available on some exotic hardware plat-
forms, which we still need to use. Third, NEST needs to remain
independent of third party software to guarantee long-term
sustainability.

Figure 1. Shown is the NEST architecture. The lowest level is the simu-
lation engine, which is used by the simulation language interpreter and
by the PyNEST low-level API. The PyNEST high-level API uses the
low-level API to communicate with the simulation engine. The user’s
simulation code can use functions from PyNEST, from Python, and
from its extension modules.

As a result, the PyNEST interface consists of two separate
layers: the low-level API, written using the Python C API,8 is re-
sponsible for the data conversion from SLI to Python and back.
It provides access to SLI with only three functions: sli push()

for pushing data onto the operand stack, sli pop() for getting
data from the SLI stack back to Python, and sli run() for ex-
ecuting SLI commands. The high-level API uses these functions
of the low-level API to provide Python versions of all important
SLI commands. The functions of the high-level API are used by
the user’s simulation code. The complete architecture of PyNEST
is shown in Figure 1.

SLI already provides all the necessary commands to build
and simulate a neural network. Thus, we can create a complete
Python interface to NEST by creating wrapper functions that just
call the respective functions in SLI. This technique is illustrated
in the following listing, which defines a function that returns the
list of available models:

def Models():

sli_run("modeldict")

return sli_pop().keys()

In general, each function has three parts: First, we push the
arguments onto the SLI stack with sli push(). Second, we ex-
ecute one or more SLI commands to perform the desired action

Continued on next page
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inside of NEST using sli run(). Third, we retrieve the results
from the stack via sli pop(). Note that the example above does
not contain a call to sli push(), as no arguments are required.
The low-level API catches all errors of NEST and raises an
appropriate Python exception.

The function sli push() has to convert a given Python ob-
ject to the corresponding SLI data type. We first determine the
type of the Python object and then instantiate a new SLI datum
of the right type. sli pop() converts a SLI datum to a Python
object. This conversion has a more elegant implementation, be-
cause it can exploit the fact that each SLI datum knows its own
type. A SLI datum thus can convert itself to a Python object of the
right type. To avoid that SLI datums directly depend on Python,
we use the acyclic visitor pattern,9 which moves Python depen-
dent code to a separate class. The details of this technique are
explained in Eppler et al. 2008.10

We have shown an alternative approach for creating Python
bindings for an application by using a generic interpreter-
interpreter interaction instead of direct wrapping of the un-
derlying functions and data structures. The implementation
of PyNEST is described in detail together with examples and
the complete API reference in Eppler et al. 2008.10 NEST’s
source code is available under an open-source license for non-
commercial use on the homepage of the NEST Initiative at
http://nest-initiative.org. Currently, we are investi-
gating methods for writing neuron and synapse models in
Python instead of C++ in order to ease the development for
users not familiar with the internal workings of NEST. In an-
other project, we are improving the scalability of NEST for very
large clusters with tens of thousands of processors, e.g. the IBM
BlueGene architecture.

The author is grateful for the support of the NEST Initiative, in
particular to Markus Diesmann, Marc-Oliver Gewaltig, Moritz He-
lias, Eilif Muller, and Hans Ekkehard Plesser. Partially funded by
DIP F1.2, BMBF Grant 01GQ0420 to the Bernstein Center for Com-
putational Neuroscience Freiburg, EU Grant 15879 (FACETS), the
Next-Generation Supercomputer Project of MEXT (Japan), and the
Helmholtz Alliance on Systems Biology (Germany).
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Computational neuroscience has produced a diversity of software for simulations of networks of 
spiking neurons, with both negative and positive consequences. On the one hand, each simulator 
uses its own programming or confi guration language, leading to considerable diffi culty in porting 
models from one simulator to another. This impedes communication between investigators and 
makes it harder to reproduce and build on the work of others. On the other hand, simulation 
results can be cross-checked between different simulators, giving greater confi dence in their 
correctness, and each simulator has different optimizations, so the most appropriate simulator 
can be chosen for a given modelling task. A common programming interface to multiple 
simulators would reduce or eliminate the problems of simulator diversity while retaining the 
benefi ts. PyNN is such an interface, making it possible to write a simulation script once, using 
the Python programming language, and run it without modifi cation on any supported simulator 
(currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN 
increases the productivity of neuronal network modelling by providing high-level abstraction, 
by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic 
analysis, visualization and data-management tools. PyNN increases the reliability of modelling 
studies by making it much easier to check results on multiple simulators. PyNN is open-source 
software and is available from http://neuralensemble.org/PyNN.

Keywords: Python, interoperability, large-scale models, simulation, parallel computing, reproducibility, computational 

neuroscience, translation

compiler standards and simulators develop. Another is that model 
source code is often not written with reuse and extension in mind, 
and so considerable rewriting to modularize the code is necessary. 
Probably the most important barrier is that code written for one 
simulator is not compatible with any other simulator.

Although many computational models in neuroscience are writ-
ten from the ground up in a general purpose programming lan-
guage such as C++ or Fortran, probably the majority use a special 
purpose simulator that allows models to be expressed in terms 
of neuroscience-specifi c concepts such as neurons, ion channels, 
synapses; the simulator takes care of translating these concepts 
into a system of equations and of numerically solving the equa-
tions. A large number of such simulators are available (reviewed in 
Brette et al., 2007), mostly as open-source software, and each has its 
own programming language, confi guration syntax and/or graphi-
cal interface, which creates considerable diffi culty in translating 
models from one simulator to another, or even in understanding 
someone else’s code, with obvious negative consequences for com-
munication between investigators, reproducibility of others’ models 
and building on existing models.

However, the diversity of simulators also has a number of positive 
consequences: (i) it allows cross-checking – the probability of two 

INTRODUCTION
Science rests upon the three pillars of open communication, repro-
ducibility of results and building upon what has gone before. In 
these respects, computational neuroscience ought to be in a good 
position, since computers by design excel at repeating the same 
task without variation, as many times as desired: reproducibility 
of computational results ought, then, to be a trivial task. Similarly, 
the Internet enables almost instantaneous transmission of research 
materials, i.e. source code, between labs.

However, in practice this theoretical ease of reproducibility and 
communication is seldom achieved outside of a single lab and a 
time frame of a few months or years. While a given scientist may 
easily be able to reproduce a result obtained a few months ago, 
precisely reproducing a result obtained several years ago is likely to 
be rather more diffi cult, and the general experience seems to be that 
reproducing the results of others is both diffi cult and time consum-
ing: very many published papers lack suffi cient detail to rebuild a 
model from scratch, and typographic errors are common.

Having available the source code of the model greatly improves 
the situation, but here still there are numerous barriers to reproduc-
ibility and to building upon previously published models. One is that 
source code can rapidly go out of date as computer  architectures, 
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different simulators having the same bugs or hidden assumptions 
is very small; (ii) each simulator has a different balance between 
effi ciency (how fast the simulations run), fl exibility (how easy it is 
to add new functionality; the range of models that can be simu-
lated), scalability (for parallel, distributed computation on clusters 
or supercomputers), and ease of use, so the most appropriate can 
be chosen for a given task.

Addressing the problems associated with an ecosystem of mul-
tiple simulators while retaining the benefi ts would greatly increase 
the ease of reproducibility of computational models in neuroscience 
and hence make it easier to verify the validity of published models 
and to build upon previous work.

There are at least two possible (and complementary) approaches 
to this. One is to enable direct, effi cient communication between 
different simulators at run-time, allowing different components 
of a model to be simulated on different simulators (Ekeberg and 
Djurfeldt, 2008). This approach addresses the problem of building a 
model from diverse components, but still leaves the problem of hav-
ing to use different programming languages, and does not enable 
straightforward cross-checking. The other approach is to develop 
a system for model specifi cation that is simulator-independent. 
Translation then only has to be done once for each simulator and 
not once for each model.

Here we can take advantage of the recent, rapid emergence of 
the Python programming language as an alternative interface to 
several of the more widely-used simulators. Thus, for example, both 
NEURON and NEST may be controlled either via their original, 
native interpreter (Hoc and SLI, respectively) or via Python. More 
recent simulators (e.g. PCSIM, Brian) have Python as the only avail-
able scripting language. This widespread adoption of Python is 
probably due to a number of factors, including the powerful data 
structures, clean and expressive syntax, extensive library, maturity 
of tools for numerical analysis and visualization (allowing use of a 
single language for the entire modelling workfl ow from simulation 
to analysis to graphing), and the ease-of-use of Python as a glue 
language which allows computation-intensive code written in a 
low-level language such as C to be transparently accessed within 
high-level Python code.

Python alone does not address the translation problem (although 
it does make the translation process easier, since at least simple data 
structures such as lists and arrays are the same for each simulator), 
since neuroscience-specifi c concepts are still expressed differently. 
However, it is now possible to defi ne a simulator-independent 
Python interface for neuronal network simulators and to implement 
automatic translation to any Python-enabled simulator. We have 
designed and implemented such an interface, PyNN (pronounced 
“pine”). In this paper we describe its design, concepts, implemen-
tation and use. We do not attempt here to provide a complete 
user guide – this may be found online at http:// neuralensemble.
org/PyNN.

DESIGN GOALS
When designing and implementing a common simulator interface, 
the following goals should be taken into account. These are the 
goals we have kept in mind when designing and implementing 
the PyNN interface, but they are equally applicable to any other 
such interface.

Write the code for a model once, run it on any supported simu-
lator or hardware device without modifi cation. This is the primary 
design goal for PyNN.

Support a high-level of abstraction. For example, it is often 
preferable to deal with a single object representing a population of 
neurons than to deal with all the individual neurons directly. Each 
single neuron can be accessed when necessary, but in many cases 
the population is the more useful abstraction. The advantages of 
this approach are that (i) it is easier to maintain a conceptual idea 
of the model, without being distracted by implementation details, 
and (ii) the internal implementation of an object can be optimized 
for speed, parallelization or memory requirements without chang-
ing the interface presented to the user.

Support any feature provided by at least two supported simula-
tors. The aim is to strike a balance between supporting all features 
of all simulators (unfeasible) and supporting only the subset of 
features common to all simulators (overly restrictive).

Allow mixing of PyNN and native simulator code. PyNN should 
not limit the range of models that can be implemented. Following 
the two-simulator rule, above, there will be things that are possible 
in one simulator and not in any other. Although a model imple-
mentation consisting of 100% PyNN is the best scenario for run-
ning on multiple simulators, an implementation with 50% PyNN 
code will be easier to convert between simulators than one with 
no PyNN code.

Facilitate porting of models between simulators. PyNN changes 
the process of porting a model between simulators from all-or-
 nothing, in which the validity of the translated model cannot be 
tested until the entire translation is complete, to an incremen-
tal approach, in which the native code is gradually replaced by 
 simulator-independent code. At each stage, the hybrid code remains 
runnable, and so it is straightforward to verify that the model 
behaviour has not been changed.

Minimize dependencies, to make installation as simple as pos-
sible and maximize fl exibility. There are no visualization and few 
data analysis tools built-in to PyNN, which means the user can use 
any such tools they wish.

Present a consistent interface on output as well as on input. 
The formats used for simulation outputs are consistent across 
simulator back-ends, making it a stable base upon which to build 
more complex systems of simulation control, data-analysis and 
visualization.

Prioritize compatibility over optimizations, but allow 
 compatibility-breaking optimizations to be selected by a deliber-
ate choice of the user (e.g. the compatible_output fl ag of the 
various print() methods is True by default, but can be set to 
False to get potentially-faster writing of data to fi le).

API Versioning. The PyNN API will inevitably evolve over time, 
as more simulators are supported and to take account of the pref-
erences of the community of users. To ensure backwards compat-
ibility, the API should be versioned so that the user can indicate 
which version was used for a particular implementation. Note that 
the examples given in this paper use version 0.4 of the API.

Transparent parallelization. Code that runs on a single processor 
should run on multiple processors (using MPI) without changes.

Some of these goals are somewhat contradictory: for exam-
ple, having a high level of abstraction and making porting easy. 
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Reconciling this particular pair of goals has led to the presence in 
PyNN of both a high-level, object-oriented interface and a low-
level, procedural interface that is more similar to the interface of 
many existing simulators. These will be discussed further below.

USAGE EXAMPLES
Before describing in detail the concepts underlying the PyNN 
interface, we will work through some examples of how it is used 
in practice: fi rst a simple example using the low-level, procedural 
interface and then a more complex example using the high-level, 
object-oriented interface.

For the simple example, we will build a network consisting of 
a single integrate-and-fi re (IF) cell receiving spiking input from a 
Poisson process.

First, we choose which simulator to use by importing the rel-
evant module from PyNN:

>>> from pyNN.neuron import *

If we wanted to use PCSIM, we would just import pyNN.pcsim, 
etc. Whichever simulator back-end we use, none of the code below 
would change.

Next we set global parameters of the simulator:

>>> setup(timestep=0.1, min_delay=2.0)

Now we create two cells: an IF neuron with synapses that respond 
to a spike with a step increase in synaptic conductance, which then 
decays exponentially, and a “spike source”, a simple cell that emits 
spikes at predetermined times but cannot receive input spikes.

>>> ifcell = create(IF_cond_exp,

…                  {'i_offset': 0.11,

…                   'tau_refrac': 3.0,

…                   'v_thresh' : -51.0})

>>> times = map(float, range(5,105,10))

>>> source = create(SpikeSourceArray,

…                  {'spike_times': times})

Behind the scenes, the create() function translates the stand-
ard PyNN model name, IF_cond_exp in this case, into the model 
name used by the simulator, Standard_IF for NEURON, iaf_
cond_exp for NEST, for example and also translates parameter 
names and units into simulator-specifi c names and units. To take 
one example, the i_offset parameter represents the amplitude of 
a constant current injected into the cell, and is given in nanoamps. 
The equivalent parameter of the NEST iaf_cond_exp model has 
the name I_e and units of picoamps, so PyNN both converts the 
name and multiplies the numerical value by 1000 when running 
with NEST. Standard cell models and automatic translation are 
discussed in more detail in the next section.

The create() function returns an ID object, which provides 
access to the parameters of the cell models, e.g.:

>>> ifcell.tau_refrac

3.0

>>> ifcell.tau_m = 12.5

>>> ifcell.get_parameters()

{'tau_refrac': 3.0, 'tau_m': 12.5,

 'e_rev_E': 0.0, 'i_offset': 0.11,

 'cm': 1.0, 'e_rev_I': -70.0,

 'v_init': -65.0, 'v_thresh': -51.0,

 'tau_syn_E': 5.0, 'v_rest': -65.0,

 'tau_syn_I': 5.0, 'v_reset': -65.0}

Having created the cells, we connect them with the connect() 
function:

>>> connect(source, ifcell, weight=0.006,

…          synapse_type='excitatory', delay=2.0)

Now we tell the system what variable or variables to record, run 
the simulation and fi nish.

>>> record_v(ifcell, 'ifcell.dat')

>>> run(200.0)

>>> end()

The result of running the above model is shown in Figure 1, 
which also shows the degree of reproducibility obtainable between 
different simulators for such a simple network.

The low-level, procedural interface, using the create(), 
 connect() and record() functions, is useful for simple models 
or when porting an existing model written in a different language 
that uses the create/connect idiom. For larger, more complex net-
works we have found that an object-oriented approach, with a 
higher-level of abstraction, is more effective, since it both clarifi es 
the conceptual structure of the model, by hiding implementation 
details, and allows behind-the-scenes optimizations.
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FIGURE 1 | Results of running fi rst example given in the text, with 

NEURON, NEST and PCSIM as back-end simulators. (A) Entire membrane 
potential trace with integration time-step 0.1 ms. (B) Zoom into a smaller 
region of the trace, showing small numerical differences between the results 
of the different simulators. (C) Results of a simulation with integration 
time-step 0.01 ms, showing greatly reduced numerical differences.
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To illustrate the high-level, object-oriented interface we turn 
now from the simple example of a few neurons to a more complex 
example: a network of several thousand excitatory and inhibitory 
neurons that displays self-sustained activity (based on the “CUBA” 
model of Vogels and Abbott (2005), and reproducing the bench-
mark model used in Brette et al. (2007)). This still is not a par-
ticularly complicated network, since it has only two cell types, no 
spatial structure and no heterogeneity of neuronal or connection 
properties, but in demonstrating how building such a network 
becomes trivial using PyNN we hope to convince the reader that 
building genuinely complex, structured and heterogeneous net-
works becomes manageable.

Again, we begin by choosing which simulator to use. We also 
import some classes from PyNN’s random module.

>>> from pyNN.nest2 import *

>>> from pyNN.random import (NumpyRNG,

…                           RandomDistribution)

We next specify the parameters of the neuron model (the same 
model and same parameters are used for both excitatory and inhibi-
tory neurons).

>>> cell_params = {

…     'tau_m':     20.0,  'tau_syn_E':   5.0,

…     'cm':         0.2,  'tau_syn_I':  10.0,

…     'v_rest':   -49.0,  'v_reset':   -60.0,

…     'v_thresh': -50.0,  'tau_refrac':  5.0

…     }

Parameters with dimensions of voltage are in millivolts, time in 
milliseconds and capacitance in nanofarads. The units convention 
is discussed further in the next section.

We now initialize the simulation, this time accepting the default 
values for the global parameters.

>>> setup()

Now, rather than creating each cell separately, we just create a 
Population object for each different type of cell:

>>> pE = Population(4000, IF_cond_exp,

…                  cell_params,

…                  label="Excitatory")

>>> pI = Population(1000, IF_cond_exp,

…                  cell_params,

…                  label="Inhibitory")

By default, all cells of a given Population are created with identi-
cal parameters, but these can be changed afterwards. Here we wish 
to randomize the value of the membrane potential at the start of 
the simulation to values between −50 and −70 mV.

>>> unif_distr = RandomDistribution('uniform',

…                                  [-50,-70])

>>> pE.randomInit(unif_distr)

>>> pI.randomInit(unif_distr)

randomInit() is a convenience method for randomizing the ini-
tial membrane potential. For the more general case of randomizing 
any cell parameter use rset().

Just as individual neurons are encapsulated within Populations, 
connections between neurons are encapsulated within Projections. 
To create a Projection object, we need to specify how the neurons will 
be connected, either via an algorithm or via an explicit list. Different 
algorithms are encapsulated in different Connector classes, e.g. 
FixedProbabilityConnector, AllToAllConnector. An explicit 
list of connections can be provided via a FromListConnector or a 
FromFileConnector.

>>> FPC = FixedProbabilityConnector

>>> exc_conn = FPC(0.02, weights=0.004,

…                 delays=0.1)

>>> inh_conn = FPC(0.02, weights=0.051,

…                 delays=0.1)

Note that weights are in microsiemens and delays in millisec-
onds. Where the delay is not specifi ed, the global minimum delay 
specifi ed in the setup() function is used. Here we set all weights 
and delays of a Projection to the same value, but it is equally 
possible to pass the constructor a RandomDistribution object, 
as we did above for the initial membrane potential, or an explicit 
list of values.

To create a Projection, we need to specify the pre- and post-
synaptic Populations, a Connector object, and a synapse type. 
The standard IF cells each have two synapse types, “excitatory” 
and “inhibitory”. User-defi ned models can use arbitrary names, 
e.g. “AMPA”, “NMDA”.

>>> e2e = Projection(pE, pE, exc_conn,

…                   target='excitatory')

>>> e2i = Projection(pE, pI, exc_conn,

…                   target='excitatory')

>>> i2e = Projection(pI, pE, inh_conn,

…                   target='inhibitory')

>>> i2i = Projection(pI, pI, inh_conn,

…                   target='inhibitory')

Having constructed the network, we now need to instrument 
it, using the record() (for recording spikes) and record_v() 
(membrane potential) methods of the Population objects. Here 
we choose to record spikes from 1000 of the excitatory neurons 
(chosen at random) and all of the inhibitory neurons, and to record 
the membrane potential of two specifi c excitatory neurons. We then 
run the simulation for 1000 ms.

>>> pE.record(1000)

>>> pI.record()

>>> pE.record_v([pE[0], pE[1]])

>>> run(1000.0)

After running the simulation, we can access the results or write 
them to fi le.

>>> pI.getSpikes()[:5]

array([[ 715. ,     1.5],

       [ 609. ,     1.6],

       [ 708. ,     1.7],

       [ 796. ,     1.7],

       [  34. ,     1.8]])
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>>> pE.get_v()[:5]

array([[  0.   ,     0.1  ,  -55.073],

       [  1.   ,     0.1  ,  -50.163],

       [  0.   ,     0.2  ,  -55.098],

       [  1.   ,     0.2  ,  -50.212],

       [  0.   ,     0.3  ,  -55.122]])

>>> end()

The results of running simulations of the above network with 
two different simulator back-ends are shown in Figure 2.

PRINCIPAL CONCEPTS
To achieve the goal of “write the code for a model once, run it 
on any supported simulator without modifi cation” requires (i) a 
 common interface, (ii) neuron and synapse models that are stand-
ardized across simulators, (iii) consistent handling of physical 
units, (iv) consistent handling of (pseudo-)random numbers. To 
achieve the twin goals of supporting a high-level of abstraction 

and  facilitating porting of models between simulators requires 
both an object- oriented and a procedural interface. The imple-
mentation of all these requirements is described in more depth in 
the following. We also illustrate the mixing of PyNN and native 
simulator code, and how PyNN can support features that are found 
in only a single simulator back-end, by describing support for 
multi- compartmental models.

STANDARD CELL MODELS
A fundamental concept in PyNN is the cell type – a given model 
of a neuron, representable by a set of equations, and comprising 
sub-threshold behaviour, spiking mechanism and post-synaptic 
response. The public interface of a cell type is mainly defi ned by its 
parameters. Different neurons of the same cell type may have very 
different behaviour if they have different values of the parameters. 
For example, the Izhikevich model (Izhikevich, 2003), can repro-
duce a wide range of spiking patterns, from fast-spiking through 
regular spiking to multiple types of bursting, depending on the 

A

NEST NEURON

 20 mV

100 ms

B

E
xc

In
h

100 ms

 0

 500

 1000

 1500

 2000

 10  100  1000

n 
in

 b
in

Inter-spike interval (ms)

C

Exc

 0

 100

 200

 300

 400

 500

 10  100  1000

Inh

 0

 500

 1000

 1500

 2000

 10  100  1000

Exc

 0

 100

 200

 300

 400

 500

 10  100  1000

Inh

 0

 100

 200

 300

 400

 500

 0  0.5  1  1.5  2

n 
in

 b
in

CV(ISI)

D
Exc

 0

 50

 100

 150

 0  0.5  1  1.5  2

Inh

 0

 100

 200

 300

 400

 500

 0  0.5  1  1.5  2

Exc

 0

 50

 100

 150

 0  0.5  1  1.5  2

Inh

FIGURE 2 | Results of running the second example given in the text, 

with NEURON and NEST as back-end simulators. Note that the network 
connectivity and initial conditions were identical in the two cases. 
(A) Membrane potential traces for two excitatory neurons. Note that the 
NEST and NEURON traces are very similar for the fi rst 50 ms, but after that 
diverge rapidly due to the effects of network activity, which amplifi es the 

small numerical integration differences. (B) Spiking activity of excitatory (black) 
and inhibitory (green) neurons. Each dot represents a spike and each row of 
dots a different neuron. All 5000 neurons are shown. (C) Distribution of 
pooled inter-spike intervals (ISIs) for excitatory and inhibitory neurons. 
(D) Distribution over neurons of the coeffi cient of variation of 
the ISI [CV(ISI)].
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parameter values chosen. A cell type is therefore a model type rather 
than a biologically defi ned cell type (such as “Layer V pyramidal 
neuron”, for example).

When using a given simulator back-end, PyNN can work with 
any cell type that is supported by that simulator. In this case, the cell 
type is generally represented by a string, holding a model name that 
is meaningful for that simulator, e.g. “iaf_neuron” in NEST.

Of course, such a cell type will only work with one simulator. To 
create a model that will run on different simulators requires you to 
use one of PyNN’s built-in, standard cell models, each represented 
by a sub-class of the StandardCell class. The models provided 
by PyNN include various simple IF models, the Izhikevich-like 
adaptive exponential IF model (Brette and Gerstner, 2005), a single-
compartment neuron with Hodgkin–Huxley sodium and potas-
sium channels, and various models that emit spikes (e.g. according 
to a Poisson process) but cannot receive them.

The StandardCell class contains machinery for translating 
model names, parameter names and parameter units between 
PyNN standardized values and simulator-specifi c values. This is 
particularly useful when the underlying simulators use different 
unit systems or different parameterizations of the same set of equa-
tions, e.g. when one simulator expects the membrane time constant 
and another the membrane leak conductance. An example of the 
translations performed by PyNN is given in Table 1.

Currently, all the standard cell types are single-compartment 
or point neuron models, since PyNN currently supports only one 
simulator for multi-compartmental models (NEURON). Further 
details on using multi-compartmental models with PyNN’s 
NEURON back-end are given below. We plan in future to allow 
specifying multi-compartmental cell types using a NeuroML 
description (Crook et al., 2005).

UNITS
As is clear from the previous section, each simulator back-end has 
its own convention for which units to use for which physical quanti-
ties. The exception to this is Brian, which has a system for explicitly 
specifying units and for checking that equations are dimensionally 
consistent. In the future, we plan to adopt Brian’s system for PyNN, 
but for now we have chosen to use a convention, which is similar to 

that of NEURON and NEST in that the units are those that tend to 
be used by experimental physiologists. An alternative would have 
been the convention used by PCSIM (and also by the GENESIS 
simulator) of using pure SI units with no prefi xes. The advantage of 
the latter convention is that there is no need for checking equations 
for dimensional consistency. The disadvantage is that numerical 
values in such a system are often very large or very small, and hence 
the human intuition for reasonable and unreasonable parameter 
values is mostly lost.

Irrespective of the relative merits of different conventions, the 
most important thing is that PyNN now provides a single conven-
tion which is valid across simulators. In detail, the convention is as 
follows: voltage – mV, current – nA, conductance – µS, time – ms, 
capacitance – nF.

STANDARD SYNAPSE MODELS
In PyNN, the shape and time-course of the elementary post- synaptic 
current or conductance change in response to a pre-synaptic spike 
are considered to be a part of the post-synaptic neuron model, while 
all other properties of a synaptic connection, notably its weight (the 
peak current or conductance of the synaptic response), delay (for 
point models, this implicitly includes axonal propagation, chemical 
transmission and dendritic propagation; more morphologically 
and/or biophysically detailed models may model explicitly some 
or all of these sources of delay), and short- and long-term plas-
ticity, are considered to depend on both pre- and post-synaptic 
neurons, and so are encapsulated in the concept of “synapse type” 
that  mirrors the “cell type” discussed above.

The default type of synaptic connection in PyNN is static, with 
fi xed synaptic weights. To model dynamic synapses, for which the 
synaptic weight (and possibly other properties, such as rise-time) 
varies depending on the recent history of post- and/or pre- synaptic 
activity, we use the same idea as for neurons, of standardized, 
named models that have the same interface and behaviour across 
simulators, even if the underlying implementation may be very 
different.

Where the approach for dynamic synapses differs from that 
for neurons is that we attempt a greater degree of compositional-
ity, i.e. we decompose models into a number of components, for 

Table 1 | Comparison of parameter names and units for different implementations of a leaky integrate-and-fi re model with a fi xed fi ring threshold 

and current-based, alpha-function synapses. This model is called IF_curr_alpha in PyNN, iaf_psc_alpha in NEST, LIFCurrAlphaNeuron in PCSIM 

and StandardIF in NEURON (this is a model template distributed with PyNN and is not in the standard NEURON distribution). Manual conversion of names 

and units is straightforward but error-prone and time-consuming. PyNN takes care of such conversions transparently.

Parameter PyNN NEST NEURON PCSIM

Resting membrane potential v_rest mV E_L mV v_rest mV Vresting V

Reset membrane potential v_reset mV V_reset mV v_reset mV Vreset V

Membrane capacitance cm nF C_m pF CM nF Cm F

Membrane time constant tau_m ms tau_m ms tau_m ms taum s

Refractory period tau_refrac ms t_ref ms t_refrac ms Trefrac s

Excitatory synaptic time constant tau_syn_E ms tau_syn_ex ms tau_e ms TauSynExc s

Inhibitory synaptic time constant tau_syn_I ms tau_syn_in ms tau_i ms TauSynInh s

Spike threshold v_thresh mV V_th mV v_thresh mV Vthresh V

Injected current amplitude i_offset nA I_e pA i_offset nA Iinject A
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example for short-term and long-term dynamics, or for the  timing-
dependence and the weight-dependence of STDP rules, that can 
then be composed in different ways.

The advantage of this is that if we have n different models for 
component A and m models for component B, then we require only 
n + m models rather than n × m, which had advantages in terms 
of code-simplicity and in shorter model names. The disadvantage 
is that not all combinations may exist, if the underlying simula-
tor implements composite models rather than using components 
itself: in this situation, PyNN checks whether a given composite 
model AB exists for a given simulator and raises an Exception if 
it does not. The composite approach may be extended to neuron 
models in future versions of the PyNN interface depending on the 
experience with composite synapse models.

Currently only a single model exists in PyNN for the short-term 
plasticity component, the Tsodyks–Markram model (Markram et al., 
1998). For long-term plasticity there is a spike-timing-dependent 
plasticity STDP component, which itself is composed of separate 
timing-dependence and weight-dependence components.

LOW-LEVEL, PROCEDURAL INTERFACE
We refer to the procedural interface as “low-level” because it deals 
with a lower level of abstraction – individual neurons and indi-
vidual synapses – than the object-oriented interface. The procedural 
interface consists of the functions create(), connect(), set(), 
record() (for recording spikes) and record_v() (for record-
ing membrane potential). Each of these functions operates on, or 
returns, either individual cell ID objects or lists of such objects. As 
was described in the Usage Examples section, as well as being passed 
around as arguments, the ID object may be used for accessing/
modifying the parameters of individual neurons, and takes care 
of parameter translation using the StandardCell mechanisms 
described above.

It is possible to some extent to mix the low-level and high-level 
interfaces. For example, it is possible to access individual neurons 
within a Population as ID objects and then use the connect() 
function to connect them, instead of using a Projection object.

Why have both a low-level and high-level interface? Having 
both is a potential source of confusion for users and is defi nitely a 
maintenance burden for developers. The main reason is to support 
the use of PyNN as a porting tool. The majority of neuronal net-
work models using existing simulators use a procedural approach, 
and so conversion to PyNN is easier if PyNN supports the same 
approach. In addition, when developing a PyNN interface for a 
simulator, or for neuromorphic hardware, that deals primarily with 
individual cells and synaptic connections, it is easier to implement 
only the low-level interface, since the high-level interface can be 
built upon it.

HIGH-LEVEL, OBJECT-ORIENTED INTERFACE
Object-oriented programming has been used for many years in 
computer science as a method for reducing program complexity. As 
the ambition and scope of large-scale, biologically detailed neuronal 
network modelling increases, reducing program complexity will 
become more and more critical, as the limiting factor in computa-
tional neuroscience becomes the productivity of the programmer 
and not the capacity of the computer (Wilson, 2006). It is for this 

reason that the preferred interface in PyNN for developing new 
models is an object-oriented one.

The object-oriented interface is built around three main 
classes:

Population – a group of cells all with the same cell type (model 
type). It is generally considered that the cells in a Population 
should all represent the same biological cell type, i.e. although 
parameter values may vary between cells in the group, all cells 
should have qualitatively the same fi ring response. This is not 
enforced, but is a good guideline to follow for producing under-
standable code. The Population class eliminates tedious itera-
tion over lists of neurons and enables more effi cient, array-based 
management of neuron properties.

Projection – the set of connections of a given synapse type 
between two Populations. Creating a Projection requires speci-
fying the pre- and post-synaptic Populations, the synapse type, 
and the algorithm used to determine which neurons connect to 
which.

Connector – an encapsulation of the connection algorithm 
used in creating a Projection. Simple examples of such algorithms 
are “all-to-all”, “one-to-one” and “connect-each-pre-and-post-
 synaptic-cell-with-a-fi xed-probability”. It is also possible to provide 
an explicit list of which cells are to be connected to which others. 
Each algorithm is defi ned within a subclass of the Connector class. 
PyNN contains a number of such classes, but it is fairly straight-
forward for a user to defi ne their own algorithms.

In future development of PyNN, we plan to extend the interface 
to still higher-level abstractions, such as layers, cortical columns, 
brain areas and inter-areal projections. We also aim to use the high-
level interface as a link between spiking network models and more 
abstract models that do not represent individual neurons, such as 
mean-fi eld models.

RANDOM NUMBERS
The central nervous system contains many sources of noise, and 
activity patterns are often suffi ciently complex, and possibly cha-
otic, to make a stochastic representation a reasonable model.

This can become a problem when comparing the behaviour of a 
given model run on different simulators, since random differences 
might obscure real inconsistencies between implementations of the 
model. Similarly, when performing distributed computations on 
parallel machines, the model behaviour should not depend on the 
number of processors used (Morrison et al., 2005), and random 
differences can conceal real differences between the parallel and 
serial implementations.

For these reasons, it is important to be able to use identical 
sequences of random numbers in different simulators, and to have 
the random number used at a particular point in the program 
execution be independent of which processor it is running on.

Another consideration is that simulations in most cases use only 
pseudo-random sequences, and low-quality random number gen-
erators (RNGs) may have correlations between different elements of 
the sequence that can signifi cantly affect the qualitative behaviour 
of a network. Hence it is necessary to be able to test the simulation 
with different RNGs.

PyNN supports simulator-independent RNGs and use of dif-
ferent generators – currently any of the generators provided by 
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the numpy package or by the GNU Scientifi c Library (GSL) can 
be used.

This is done by wrapping the numpy and GSL RNGs in classes 
with a common interface. PyNN’s random module contains the 
classes NumpyRNG and GSLRNG, which both have a single method, 
next(n, distribution, parameters), which returns n ran-
dom numbers from a distribution of type distribution with 
parameters parameters, e.g.

>>> from pyNN.random import NumpyRNG, GSLRNG

>>> rngN = NumpyRNG(seed=76847376)

>>> rngG = GSLRNG(seed=87548753)

>>> rngN.next()

0.91457981651574294

>>> rngG.next(5)

array([ 0.02518011, 0.79118205, 0.16679516, 

…      0.1902914, 0.66204769])

>>> rngN.next(3, 'gamma', [2.0, 0.5])

array([ 0.48903019, 0.63129009, 0.70428452])

>>> rngG.next(distribution='uniform')

0.93618978746235371

Since all PyNN code that uses random numbers accesses the 
RNG classes only through this next() method, a user can substi-
tute their own RNG simply by defi ning a wrapper class with such 
a method.

Since very often one wishes to use the same random distribution 
repeatedly, rather than changing distribution each time, the random 
module also provides the RandomDistribution class, which is 
initialized with the distribution name and parameters, and there-
after the next() method is simplifi ed to take a single argument, 
the number of values to draw from the distribution, e.g.

>>> from pyNN.random import (NumpyRNG,

…                           RandomDistribution)

>>> rng = NumpyRNG(seed=8745753)

>>> gamma_distr = RandomDistribution('gamma',

…                                   [2.0, 0.5],

…                                   rng=rng)

>>> gamma_distr.next(3)

array([ 0.72682412, 0.82490159, 1.03882654])

Note that NumpyRNG and GSLRNG distributions may not 
have the same names, e.g. “normal” for NumpyRNG and “gaussian” 
for GSLRNG, and the arguments may also differ. One of our future 
plans is to extend the random module in order to harmonize names 
across RNGs.

MULTI-COMPARTMENTAL MODELS
PyNN currently supports only a single simulator, NEURON, that 
is suitable for many-compartment models. Given the principle 
of supporting simulator-independence only for features that are 
shared by at least two of the supported simulators, and given 
PyNN’s focus on network modelling, PyNN does not provide an 
API for specifying simulator-independent multi-compartmental 
models. This is a possible future development – preliminary work 
has been done on a PyNN interface to the MOOSE simulator (Ray 
and Bhalla, 2008) – but a more likely path would be to make use 

of the NeuroML standards for specifying multi-compartmental 
 models. In this scenario, the fi lename of a NeuroML level 2 fi le, 
specifying a single cell type, would be passed as the cellclass 
argument to the PyNN create() function or Population 
constructor.

However, since native and PyNN code can be mixed, the 
pyNN.neuron module already supports simulations with multi-
 compartmental models. The pre-synaptic compartment whose 
voltage is watched to trigger synaptic transmission (e.g. axon 
terminal) can be specifi ed using the source argument to the 
Projection constructor, and the post-synaptic mechanism speci-
fi ed with the target argument.

DEBUGGING
Should an error occur in a PyNN simulation, a good fi rst step is to 
re-run it on another simulator back-end and so narrow down the 
source of the problem to one back-end in particular. Nevertheless, 
it has proven to be the case that the additional layers of abstrac-
tion provided by PyNN sometimes make it harder to track down 
sources of errors. To counterbalance this, PyNN traps errors coming 
from the simulator core and employs Python’s introspection capa-
bilities to provide additional information about the error context. 
For example, if an invalid parameter name is provided to a neu-
ron model, the error message lists all the valid parameter names 
for that model. Furthermore, logging can be switched on via the 
init_logging() function in the pyNN.utility module, causing 
detailed information about what the system is doing to be written 
to fi le, a valuable resource for tracking down bugs.

IMPLEMENTATION
PyNN is both a defi nition of a common simulator interface and 
an implementation of this interface for each supported simulator. 
PyNN is implemented as a Python package containing a common 
module, which defi nes the API and contains functionality common 
to all simulator back-ends, a random module (described above), 
and a module for each simulator back-end, as shown in Figure 3. 
Each simulator module separately implements the API, although 
it can make use of much shared code in common. In most cases, 
the simulator modules have been implemented by, or in close col-
laboration with, the simulator developers.

PyNN currently fully supports the following simulators: 
NEURON (Carnevale and Hines, 2006; Hines and Carnevale, 
1997; Hines et al., 2008), NEST (Eppler et al., 2008; Gewaltig and 
Diesmann, 2007), PCSIM (http://www.lsm.tugraz.at/pcsim/) and 
Brian (Goodman and Brette, 2008). Support for MOOSE (Ray 
and Bhalla, 2008) and for export in NeuroML format (Crook et al., 
2005) is under development.

PyNN also supports the Heidelberg neuromorphic hardware 
system (Schemmel et al., 2007). This illustrates a major benefi t of 
the existence of a common neuronal simulation interface: novel 
simulation or emulation systems do not need to develop their own 
programming interface, but can benefi t from an existing one that 
guarantees interoperability with existing tools. Using PyNN as the 
interface to neuromorphic hardware systems provides the possi-
bility of closing the gap between the two domains of numerical 
simulation and physical emulation, which have so far coexisted 
rather separately.
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LIMITATIONS ON REPRODUCIBILITY
For a given model with a given parameter set run on a given version 
of a given simulator, it should be possible to exactly reproduce a 
simulation result, independent of computer architecture (except 
where this affects the precision of the fl oating-point representa-
tion) or operating system. For parallel systems, results should also 
be independent of how many threads or processes are used in the 
computation, although here exact quantitative reproduction is 
harder to achieve. Reproducibility across different versions of a 
given simulator is not essential provided the precise version used 
to generate a given result is specifi ed, but it is of course highly 
desirable. When running a model on different simulators, exact 
reproduction is impossible to achieve, except in simple cases, due 
to round-off errors in fl oating point calculations. When validating 
a model implementation by running it on two or more simulators, 
therefore, what level of reproducibility is achievable, and how can 
we tell whether any differences are due to round-off error or to 
implementation errors?

To get a preliminary handle on this problem, we have com-
pared the difference in model activity between two simulators to 
the difference due to two different initial conditions with the same 
simulator.

Our test case is the balanced random network, based on Vogels 
and Abbott (2005), whose implementation was shown above. The 
activity pattern of this network is very sensitive to initial condi-
tions (chaotic or near-chaotic), and so we cannot use differences in 
the precise spike pattern to measure reproducibility: we are more 
interested in the statistical properties of the activity, and so we 
have chosen to take the distribution of inter-spike intervals (ISIs) 
of excitatory neurons (see Figure 2C) as a measure of network 
activity.

To measure the difference between the distributions from two 
different runs we use the Kolmogorov–Smirnov two-sample test. 
We ran the simulation ten times, each time with a different seed 
for the RNG used to generate the initial membrane potential 
distribution, with both NEURON and NEST back-ends. This gave 
values for the Kolmogorov–Smirnov D-statistic between 0.008 
and 0.026 (n � 19000) with a mean of 0.015, with associated 

p-values (probability that the two distributions are the same) 
between 6.3 × 10−5 and 0.68 with mean 0.15.

We then ran the simulation twenty times just on NEURON, each 
time with a different RNG seed, to give 10 pairs of distributions. In 
this case the D-values were in the range 0.007–0.026, mean 0.015, 
and the p-values in the range 2.8 × 10−5 to 0.77, mean 0.20.

In summary, the differences due to different simulators are in 
almost exactly the same range as those due to different initial con-
ditions, suggesting that the differences between the simulators are 
indeed due to round-off errors and that there are not, therefore, 
any implementation errors in this case.

It is also interesting to note that in most cases the null hypothesis 
is supported, i.e. the distributions are the same, but that for some 
initial conditions there are highly signifi cant differences between 
the ISI distributions. The ISI distribution may not therefore be the 
best measure for reproducibility in this case.

DISCUSSION
In this article we have presented PyNN, a Python-based common 
simulator interface, which allows simulator-independent model 
specifi cation. PyNN is already in use in a number of research groups, 
and has been a key technology enabling improved communication 
between labs in a pan-European collaborative project with a major 
component of modelling and of neuromorphic hardware develop-
ment (the FACETS project: http://www.facets-project.org).

By providing a standard simulation platform, PyNN also has 
the potential to act as the foundation for other, simulator agnostic 
but neuroscience-specifi c, tools such as analysis, visualization and 
data-management software.

PyNN is not the only project to address simulator- independent 
model specifi cation and simulator interoperability (review in 
Cannon et al., 2007). neuroConstruct (Gleeson et al., 2007) is a 
tool to develop networks of morphologically-detailed neurons 
using a graphical user interface (GUI), that can generate code 
for both the NEURON and GENESIS simulators. A limitation 
with respect to PyNN is that since it uses code generation rather 
than a direct interface, neuroConstruct cannot receive informa-
tion back from the simulator except by reading the data fi les it 
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generates. A second limitation is that features that are not avail-
able through the GUI cannot be incorporated in a model. The 
NeuroML standards (Crook et al., 2005, http://www.neuroml.org) 
are intended to provide an infrastructure for exchanging model 
specifi cations between groups in a simulator-independent way. 
Their scope includes much more detailed levels of modelling, e.g. 
membrane ion channels and detailed dendritic morphology, than 
are supported by PyNN. They have the advantage over PyNN of 
being language-independent, since specifi cations are written in 
XML, for which tools exist in all major programming languages. 
The major disadvantage of purely declarative specifi cations is lack 
of fl exibility: if a concept or entity is not defi ned in the standard, 
it is not possible to specify models that use it, whereas with a 
procedural/imperative or mixed declarative-procedural specifi -
cation such as is achievable with PyNN, arbitrary specifi cations 
are possible.

Although we emphasize here the differences between the 
GUI, pure-declarative, and programming-interface approaches 
to  simulator-independent model specifi cation, in fact they are 
highly complementary. Graphical interfaces are particularly 
good for beginners, for teaching, for giving high-level overviews 
of a system, and for integrating analysis and visualization tools. 
It would be very useful for neuroConstruct to be able to gener-
ate PyNN code, for example, in addition to code for NEURON 
and GENESIS. Declarative specifi cations reach the highest levels 

of system- independence, for the range of concepts that are sup-
ported. They are also particularly suitable for transformation into 
human-readable formats and for automated GUI generation. As 
such, they seem to be best suited for domains in which the model-
ling approach is fairly stable, e.g. for describing neuron morpholo-
gies or non- stochastic ion channel models. In PyNN, we plan to 
support  simulator-independent multi-compartmental models 
using NeuroML: in this scenario cell models would be specifi ed in 
NeuroML while PyNN would be used for network specifi cation 
and for simulation setup and control.

Our main priorities for future development of PyNN are to 
increase the number of supported simulators (simulator  developers 
who are interested in PyNN support for their simulator are encour-
aged to contact us), improve the support for multi-compartmental 
modelling, and extend the interface towards higher-level abstrac-
tions, such as cortical columns and more abstract modelling 
approaches. PyNN is open source software (CeCILL licence, http://
www.cecill.info) and has an open development model: anyone who 
wishes to contribute is welcome and invited to do so.
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Abstract MUSIC is a standard API allowing large scale
neuron simulators to exchange data within a parallel
computer during runtime. A pilot implementation of
this API has been released as open source. We provide
experiences from the implementation of MUSIC inter-
faces for two neuronal network simulators of different
kinds, NEST and MOOSE. A multi-simulation of a
cortico-striatal network model involving both simu-
lators is performed, demonstrating how MUSIC can
promote inter-operability between models written for
different simulators and how these can be re-used to
build a larger model system. Benchmarks show that the
MUSIC pilot implementation provides efficient data
transfer in a cluster computer with good scaling. We
conclude that MUSIC fulfills the design goal that it
should be simple to adapt existing simulators to use
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Introduction

Large scale neuronal network models and simulations
have become important tools in the study of the brain
and the mind (Albus et al. 2007; Djurfeldt et al. 2008a).
Such models work as platforms for integrating knowl-
edge from many sources of data. They help to eluci-
date how information processing occurs in the healthy
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brain, while perturbations to the models can provide
insights into the mechanistic causes of diseases such
as Parkinson’s disease, drug addiction and epilepsy.
A better understanding of neuronal processing may
also contribute to computer science and engineering
by suggesting novel algorithms and architectures for
fault tolerant and energy efficient computing (see, e.g.,
Schemmel et al. 2008). Simulations of increasingly
larger network models are rapidly developing. In prin-
ciple, we have, already today, the computational capa-
bility to simulate significant fractions of the mammalian
cortex (Djurfeldt et al. 2008b). A great deal of effort has
been put into the development of simulation software
suites (see, e.g., Brette et al. 2007). Different software
packages, such as NEURON (Carnevale and Hines
2006), GENESIS (Bower and Beeman 1998) and NEST
(Gewaltig and Diesmann 2007) have been developed
for simulations of neuron and network models.

Depending on the scientific question asked, or on
the tradition in respective computational neuroscience
lab, models of various parts of the brain have been
formulated using different simulators. The positive side
of this diversity is that it provides a repertoire of tools
where different simulators have different strengths (see
e.g. Brette et al. 2007, for a review of software for spik-
ing neuron simulations). Diversity is also good for the
strong ongoing development of simulation technology.
On the negative side, the reuse of models is hampered
by the lack of interoperability due to the multitude of
languages and simulators used. Also, reimplementation
of one model in other software is in practice both time
consuming and error prone (personal experience, see
also Cannon et al. 2007).

Interoperability can be facilitated in several ways.
One approach is to provide a model specification in
some standardized format which can be understood by
many simulation tools. Two developments in this direc-
tion are PyNN and NeuroML. PyNN (Davison et al.
2009) is a common programming interface enabling
model scripting in the Python programming language.
PyNN already supports several simulators. The compu-
tational neuroscience community has built a growing
toolbox around this environment for simulation and
analysis of data. NeuroML is an XML-based standard
for the description of model components at various lev-
els of the nervous system which also allows models to be
described in a simulator-independent way (Crook and
Howell 2007; Crook et al. 2007). Another approach,
run-time interoperability (Cannon et al. 2007), is to al-
low different simulation tools to communicate data on-
line. MUSIC (Ekeberg and Djurfeldt 2008, 2009) is a
standard interface for on-line communication between
simulation tools. The MUSIC project was initiated by

the INCF (International Neuroinformatics Coordinat-
ing Facility, http://www.incf.org) as a result of
the 1st INCF Workshop on Large Scale Modelling of
the Nervous System (Djurfeldt and Lansner 2007). A
demonstration of MUSIC’s capability to couple models
was presented at the INCF booth at the Society for
Neuroscience Conference in Washington 2008.

Here we report on our experiences and insights from
connecting two preexisting models of very different
kinds; one cortical network model using integrate-and-
fire units and one striatal network based on biologi-
cally detailed units. The cortical network model was
implemented in NEST while the striatal network model
was developed using GENESIS, but simulated here in
MOOSE. By adding a MUSIC interface to each simu-
lator and connecting them using MUSIC, we could sim-
ulate the two systems together as one multi-simulation.
Connecting the two models was interesting in its own
right, but this would also serve as a realistic test of how
hard it is to actually achieve interoperability between
two independently developed models using the new
MUSIC framework.

MUSIC

MUSIC is a recently developed standard for run-time
exchange of data between MPI-based parallel applica-
tions in a cluster environment (Ekeberg and Djurfeldt
2009) so that any MUSIC-compliant tool may work
out-of-the-box with another. A pilot implementation
was released during 2009. The standard is designed
specifically for interconnecting large scale neuronal
network simulators, either with each-other or with
other tools. The data sent between applications can be
either event based, such as neuronal spikes, or graded
continuous values, for example membrane voltages.

The primary objective of MUSIC is to support multi-
simulations where each participating application itself
is a parallel simulator with the capacity to produce
and/or consume massive amounts of data. Figure 1
shows a typical multi-simulation where three applica-
tions, A, B, and C, are exchanging data during runtime.

MUSIC promotes interoperability by allowing mod-
els written for different simulators to be simulated
together in a larger system. It also enables reusability of
models or tools by providing a standard interface. The
fact that data is spread out over a number of processors
makes it non-trivial to coordinate the transfer of data
so that it reaches the right destination at the right time.
When applications are connected in loops, timing of
communication also becomes complex. The task for
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Fig. 1 Illustration of a typical multi-simulation using MUSIC.
Three applications, A, B, and C, are exchanging data during
runtime. Each application runs in a set of MPI processes. Data
flows exit and enter ports, each spanning the set of processes of
the application

MUSIC is to relieve the applications from handling this
complexity.

The MUSIC pilot implementation consists of header
files, a library and utilities. A MUSIC-compliant ap-
plication is compiled against the MUSIC header files,
linked with the MUSIC library and launched by the
MUSIC launch utility (named music). Currently, an
application needs to be compiled in a system where
the full MUSIC implementation is installed. However,
the resulting binary may be dynamically linked against
other revisions of the MUSIC library. In a future re-
lease, standard header files can be separated so that
these can be shipped together with the application.

The pilot implementation has been designed to run
smoothly on state-of-the-art high-performance hard-
ware. The software is written in C++, which is the
de facto standard for current high-end hardware, and
has been tested on simple multi-core machines up to
massively parallel supercomputers such as the IBM
Blue Gene/L. It can be automatically configured (GNU
autotools) and compiled over the range of architectures
tested, including 32- and 64-bit Intel-/AMD-based clus-
ters and the Blue Gene/L.

At the beginning of this project, no simulators had
been adapted to use MUSIC. In a collaborative effort,
developers from the NEST and MOOSE communities
worked together with the MUSIC developers in adapt-

ing these two simulators for use in a multi-simulation
environment.

Phases of Execution

A multi-simulation, i.e. a set of interconnected parallel
applications, is described by a MUSIC conf iguration
f ile and executed in three distinct phases. From the
simulator developers’ point of view, these phases are
clearly separated through the use of two main com-
ponents of the MUSIC interface: the Setup and the
Runtime objects.

Launch is the phase where all the applications are
started on the processors. During this phase,
MUSIC is responsible for interpreting the
configuration file and launching the appli-
cation binaries on the set of MPI processes
allocated to the MUSIC job. Since MPI
can be initialized only after the applica-
tions have been launched, most of this work
needs to be performed outside of MPI.
In particular, the tasks of accessing the
command line arguments of the MUSIC
launch utility and of determining the ranks
of processes before MPI initialization there-
fore have to be handled separately for
different MPI implementations.
Technically, the launch phase begins when
mpirun launches the MUSIC launch utility
and ends when the Setup object construc-
tor returns. The Setup object is used for ini-
titialization and configuration and replaces
the call to MPI::Init. (See further descrip-
tion below.)

Setup is the phase when all applications can pub-
lish what ports they are prepared to han-
dle along with the time step they will use
and where data will be present (where
in memory and/or on what processor).
During the setup phase, applications can
read configuration parameters communi-
cated via the common configuration file. At
the end of the setup phase, MUSIC will
establish all connections.
The setup phase begins when the Setup
object has been created and ends when the
Runtime object constructor returns.

Runtime is the phase when simulation data is actually
transferred between applications. Via calls
to Runtime::tick() the simulated time of
the applications is kept in a consistent order.
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The runtime phase begins when the
Runtime object has been created and ends
when its finalize() method is called.

When the application initializes MUSIC at the be-
ginning of execution it receives the Setup object. This
object gives access to the functionality relevant during
the setup phase via its methods. When done with the
setup, the application program makes the transition
to the runtime phase by passing the Setup object as
an argument to the Runtime object constructor which
destroys the Setup object. The Runtime object pro-
vides methods relevant during the runtime phase of
execution.

MUSIC requires that the application uses a com-
municator handed to it from the Setup object rather
than using MPI::COMM_WORLD directly. This intra-
communicator is used by the application to communi-
cate within the group of processes allocated to it by
MUSIC during launch, while the MUSIC library will
internally use inter-communicators for communication
of data between MUSIC ports. When a MUSIC-aware
application is launched by mpirun instead of the MU-
SIC launch utility, the communicator returned from the
Setup object will be identical to MPI::COMM_WORLD.

Communicating via MUSIC

In order to communicate via MUSIC, each participat-
ing application must be interfaced to the MUSIC API.
One design goal of MUSIC has been to make it easy
to adapt existing simulators. In most cases, it should
be possible to add MUSIC library support without
invasive restructuring of the existing code. The primary
requirements on an application using MUSIC is that it
declares what data should be exported and imported
and that it repeatedly calls a function at regular inter-
vals during the simulation to allow MUSIC to make the
actual data transfer.

Ports and Indices

Communication between applications is handled by
ports. Ports are named sources (output ports) or sinks
(input ports) for the data flow. In the current MUSIC
API, there are three kinds of ports: Continuous
ports communicate multi-dimensional continuous time-
series, for example membrane voltages. Event ports
communicate time-stamped integer identifiers, for ex-
ample neuronal spikes. Message ports communicate
message strings, for example a command in a script-
ing language. The data to be communicated may be

differently organized in process memory on the re-
ceiver side compared to the sender side. The appli-
cations may run on different numbers of processes,
and, the data may be differently distributed among the
sender processes and the receiver processes, as is shown
in Fig. 2. How does MUSIC know which data to send
where?

In MUSIC, there are two views of the data to
be communicated over a connection. Data elements
are enumerated differently according to these views.
MUSIC uses shared global indices to enumerate the
entire set of data to be sent over the connection while
local indices enumerate the subset of data which is
stored in the memory of a particular MPI process. Data
does not need to be ordered in the same way according
to the two views. For example, data stored in an array
may be associated with an arbitrary subset of global
indices in an arbitrary order.

The MUSIC library is informed about the relation-
ship between global and local indices and how data is
stored in memory during the setup phase. Two abstrac-
tions are used to carry this information:

The IndexMap maps local indices to global indices.
That is, the IndexMap tells which parts of a distributed
data array are handled by the local process and how the
data elements are locally ordered.

The DataMap encapsulates how a port accesses its
data. The DataMap contains an IndexMap. While an
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Fig. 2 Data transfer over a connection from an application
running in four processes to an application running in three
processes. The light gray areas in the sender and receiver rep-
resent the MUSIC port. Dashed lines divide the application into
distinct processes. The width of the port is the total number of
distinct data items being communicated from all sender processes
to the receiver processes
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index map is a mapping between two kinds of indices,
the data map also contains information about where in
memory data resides, how it is structured, and, the type
of the data elements. The type is used for marshalling
when running on a heterogeneous cluster.

During setup every process of the application in-
dividually provides the port with a DataMap (or an
IndexMap in the case of event ports).

Events

Since event ports don’t access data the same way as
ports for continuous data, they do not require a full
DataMap. Instead, an IndexMap is used to describe
how indices in the application should be mapped to the
shared global indices common to sender and receiver.
The application is given the choice of using local indices
or bypassing the index transformation by directly using
the shared global indices when labelling events.

An event is a pair of an index identifier, either a
shared global index or a local index, and a double-
precision floating point time-stamp. The index usually
refers to the source neuron generating a spike event.
Events are given to MUSIC by the sending applica-
tion through a call to the method insertEvent() on
the port and delivered to the receiving application by
MUSIC through an event handler. The event handler
is a C++ functor given to MUSIC by the application
before the simulation starts. The event handler is called
by MUSIC when the application calls tick(). It is
called once for every event delivered.

Some spiking neuronal network models include ax-
onal delays. The MUSIC framework assumes that han-
dling and delivery of delayed spikes occurs on the
receiver side. In such a case, the receiver may allow
MUSIC to deliver a spike event later than its time
stamp according to local time. This maximal acceptable
latency can be specified for a port during setup.

Application Responsibilities

One goal of MUSIC has been to limit the responsibil-
ities imposed on each application. Here we present a
step-by-step list of what an application must do in order
to participate in a multi-simulation.

1. Initiate MUSIC
This is done by calling the Setup constructor.

2. Publish ports
Data available to be imported and exported is iden-
tified by creating named ports.

3. Map ports
MUSIC is informed about where the actual data
is located. This includes information about which
processor owns each data element. For continuous
data it also includes information about where in
memory it is stored, while for event data it specifies
how to receive events.

4. Initiate the runtime phase
This is done by calling the Runtime constructor.
At this stage, MUSIC can build the plan for com-
munication between different processes.

5. Advance simulation time
The application must call tick() at regular inter-
vals to give MUSIC the opportunity to transfer
data.

6. Finalize MUSIC
By calling finalize(), all MUSIC communication
is terminated.

Pre- and Post-processing

The MUSIC framework provides a uniform interface
to access data from various simulators. This allows
the development of pre- and post-processing tools, for
example for data analysis or visualization, that are
independent of data sinks or sources so that they can
be re-used in different multi-simulations.

This is exemplified here by a visualizaton tool writ-
ten for INCF’s MUSIC demonstration at the Society
for Neuroscience Conference 2008 in Washington. The
tool receives events from a MUSIC event port and
displays these as changes in size and color of a set
of 3D spheres resembling the neurons of a neuronal
network. The demonstration is described in Section “A
MUSIC Multi-simulation with NEST and MOOSE”
and the graphics window of the visualization tool shown
in Fig. 13. The communication between the simulator
and the visualization tool is set up using the MUSIC
configuration file. The visualization geometry, neuron
sizes and colors are specified in a separate configuration
file. The camera position is automatically adjusted so
that all neurons are visible.

MUSIC allows simulators to run independently of
each other, in so far as one model might run ahead of
another if there is only unidirectional communication
between them. To cope with this, the visualization
maintains its own internal clock which is a scaled ver-
sion of the wall-clock time. For example, the visualiza-
tion can be configured to display the simulation 100
times slower than real time. This makes the visualiza-
tion independent of the relative execution time of the
simulators.
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Adapting NEST to MUSIC

NEST (Gewaltig and Diesmann 2007) is a simulator for
heterogeneous networks of point neurons or neurons
with a small number of electrical compartments. The
focus of NEST is on the investigation of phenomena
at the network level, rather than on the simulation of
detailed single neuron dynamics.

NEST is implemented in C++ and can be used on a
wide range of architectures from single- and multi-core
desktop computers to super-computers with thousands
of processors. It has a built-in simulation language in-
terpreter (SLI), but can also be used from the Python
programming language via an extension module called
PyNEST. In this article, we use the PyNEST syntax to
show the usage of the MUSIC interface in NEST. As
Python does not support MPI enabled extensions out
of the box, a small launcher script has to be used (see
Section B in the online supplementary material). For
details on PyNEST and its API, see Eppler et al. (2009).

Implementation of the NEST-MUSIC Coupling

Event sources and sinks that are located in remote
MUSIC applications are represented by proxy nodes
inside of NEST. Two separate classes of proxies are
used for inbound and outgoing connections. They are
derived from the base class Node. This means that
they are created and can be connected in the network
graph like all other nodes. See online supplementary
material, Section A, for a more detailed description of
the network representation in NEST.

To make it easier to distinguish global ids (NEST’s
identifiers for nodes) from global indices (MUSIC’s
identifiers for connections on a port, see Section “Ports
and Indices”), we use the term channel for the concept
from MUSIC in the following description and in our
implementation.

Three new classes were implemented to exchange
events with MUSIC. In addition, several of the existing
classes were extended by data structures and algorithms
for the necessary book keeping during setup and run-
time phase. The following sections contain a description
of the components that are involved in the MUSIC in-
terface. See online supplementary material, Section D,
for sequence diagrams that explain the interaction of
the components.

Sending Events from NEST to MUSIC

The class music_out_proxy represents a MUSIC
output port and all associated channels in NEST (see
Fig. 3). It forwards the events of arbitrarily many nodes

to remote MUSIC targets. One instance of this proxy is
created in each NEST process for each MUSIC output
port.

The name of the corresponding MUSIC output port
is set as parameter port_name using SetStatus():

outproxy = Create ( ‘ music_out_proxy ’ )
SetStatus (outproxy , { ‘ port_name ’ :

‘spikes_out ’ } )

The events of a node are forwarded to the MUSIC
channel that is specified by the parameter music_
channel during connection setup. It cannot be
changed, once the connection is set up. Note that it is
not allowed to connect several nodes to the same chan-
nel. The following example shows how the connections
of five neurons to a MUSIC port are set up:

neurons = Create ( ‘ iaf_neuron ’ , 5)
Connect ( [ neurons [ 0 ] ] , outproxy ,

{ ‘ music_channel ’ : 0 } )
Connect ( [ neurons [ 1 ] ] , outproxy ,

{ ‘ music_channel ’ : 1 } )
Connect ( [ neurons [ 2 ] ] , outproxy ,

{ ‘ music_channel ’ : 2 } )
Connect ( [ neurons [ 3 ] ] , outproxy ,

{ ‘ music_channel ’ : 3 } )
Connect ( [ neurons [ 4 ] ] , outproxy ,

{ ‘ music_channel ’ : 4 } )

During connection setup in NEST, the sender
checks its compatibility with the receiver by calling its
connect_sender() function. The first argument for
this function is an event of the type the sender wants
to send during simulation, which is only used to select
the correct variant of connect_sender(). The second

Fig. 3 The UML diagram shows the data members and the
functions of the proxy that represents MUSIC output ports in
NEST. The new class is shown in grey
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(a) (b)

Fig. 4 a Nodes in NEST are distributed over the processes (p =
0, 1, 2). iaf denotes an integrate and fire neuron, (iaf) denotes
a proxy. mop denotes a music_out_proxy. MUSIC channels
are indicated in square brackets for each connection (arrows).

b A sketch of the complete connectivity from the nodes (lower
squares) over the different channels (numbers in square brackets)
to MUSIC. The dashed box encloses all proxies that belong to
one MUSIC output port

argument is an integer which specifies the channel the
source wants to connect to, and is used to build the
indexmap, a list that registers all channels that have
to be mapped with MUSIC. The indexmap is built
separately by each process and therefore only contains
local channels.

Figure 4 shows the network in NEST after the above
commands were executed using three NEST processes.

Before NEST tells MUSIC to enter the runtime
phase, the port has to be mapped. This is done in
calibrate(), which is called by NEST’s scheduler
on each node before the start of the simulation. This
function executes the following steps:

1. Create a MUSIC::EventOutputPort, outport.
This will trigger an exception if the port name is
already used.

2. Create a MUSIC::PermutationIndex and initial-
ize it with the data from the indexmap. The
PermutationIndex informs MUSIC about the
channels present on a specific process.

3. Use the PermutationIndex to map all lo-
cal channels by calling the function map() on
outport.

Events that are delivered to the proxy are passed to
its handle() function with the event as argument. This
function forwards the spikes directly to the MUSIC
output port object outport.

Note that as the music_out_proxy only acts as a
proxy for nodes in NEST, it does not take into account
the delay of incoming connections. Synaptic interac-
tions have to be set up in the receiving application.

Receiving Events from MUSIC in NEST

In contrast to MUSIC output ports, which are
represented by single music_out_proxys in
NEST, inbound connections require two classes:
The MUSIC input port is represented by the
class MusicEventHandler (see Fig. 5). One
MusicEventHandler is created for each MUSIC

Fig. 5 The UML diagram
shows the data members and
the functions of the proxy
that represents a channel on a
MUSIC input port in NEST
and its relation to the class
that represents the MUSIC
input port. New classes are
shown in grey
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input port in each of NEST’s processes. Each
channel on the port is represented by a separate
music_in_proxy (see Fig. 5). The reason for this
is that NEST’s connection mechanism cannot handle
different signal origins, but only different target
locations on a node. This means that we cannot specify
the MUSIC channel during connection setup to a single
proxy (cf. Section “Sending Events from NEST to
MUSIC”), but we need to set it separately as a
parameter for the music_in_proxy, which should
receive the respective input.

The MusicEventHandler maintains a
channelmap, which maps the global MUSIC channel
id to the address of the corresponding proxy. The
channelmap is built incrementally during the
registration of channels by register_channel().

Spike sources in remote MUSIC applications are
represented in NEST by instances of class music_in_
proxy. Each instance listens to exactly one channel on
a MUSIC input port. This means that several proxies
listen to the same port, but to different channels.

After the creation of the proxy, the port name and
the channel are set using SetStatus(). The port name
defaults to spikes_in for all music_in_proxys.

in_proxies = Create ( ‘ music_in_
proxy ’ , 2)

SetStatus ( [ in_proxies [ 0 ] ] ,
{ ‘ music_channel ’ : 0 } )

SetStatus ( [ in_proxies [ 1 ] ] ,
{ ‘ music_channel ’ : 1 } )

Connections from a music_in_proxy to other
nodes can use any of NEST’s built-in connection
types. The following listing shows how connections
are established using the high-level connection routine
DivergentConnect() and the basic connection com-
mand Connect():

neurons = Create ( ‘ iaf_neuron ’ , 4)
DivergentConnect ( [ in_proxy [ 0 ] ] ,

[ neurons [ 0 ] , neurons [ 1 ] ] )
DivergentConnect ( [ in_proxy [ 1 ] ] ,

[ neurons [ 1 ] , neurons [ 2 ] ] )
Connect ( [ in_proxy [ 0 ] ] , [ neurons [ 3 ] ] ,

model= ‘stdp_synapse ’ )

Figure 6 shows the network representation after the
above commands were executed in a setup with three
NEST processes.

As the proxy itself does not know about MUSIC,
we use an indirection via the Network class to register
the proxy with the event handler for the corresponding
port.

In its calibrate() function, the proxy registers
itself with its channel index and port name with
the Network class by calling register_music_in_
proxy(). The network class maintains a mapping of
port names to MUSIC event handlers to efficiently find
the right one or create a new instance for unknown
ports if an input proxy is registrered. Before the start
of the simulation, all known input ports are mapped.

(a) (b)

Fig. 6 a Nodes in NEST are distributed over the processes (p =
0, 1, 2). iaf denotes an integrate and fire neuron, (iaf) denotes
a proxy. mip denotes a music_in_proxy. The numbers on the
left indicate the global id of the nodes. MUSIC channel ids are
indicated in square brackets for each music_in_proxy. The
STDP connection is indicated by a dashed arrow. b A sketch

of the complete connectivity from MUSIC (channels in square
brackets) to the MUSIC event handler (grey rectangles) to the
proxies (squares labeled 1 and 2) to the actual target nodes (lower
squares). The STDP connection is indicated by a dashed arrow.
The dashed box encloses all event handlers and proxies that
represent a MUSIC input port
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For each incoming spike, MUSIC calls operator()
on the event handler with the time of the spike and
the target channel as arguments. operator() creates
a new SpikeEvent object and passes it directly to
the handle() function of the proxy associated with the
channel. This bypasses the synapse system in NEST and
only informs the proxy about a new spike in a remote
application. Upon arrival of new events, the handle()
function immediately calls Network::send() to de-
liver the event to all local targets via the synapse
system.

Adapting MOOSE to MUSIC

MOOSE (Multiscale Object Oriented Simulation Envi-
ronment, available at http://moose.ncbs.res.in)
is a simulator which enables the development and
simulation of biologically detailed models of neuronal
and biochemical networks. It is a multiscale simulator,
as it lets a modeller build a model by coupling
components from different levels of detail—from
single molecules to whole neurons. It achieves this
by coordinating calculations between specialized
numerical engines which are suited for each level of
detail.

To discuss how MUSIC compatibility was added to
MOOSE, it will be helpful to outline how MOOSE
functions. MOOSE inherits an object-oriented frame-
work from the GENESIS simulator (Bower and
Beeman 1998) for describing models and simula-
tions. In this framework, the user sets up a simu-
lation by putting together the right building blocks
(“MOOSE objects”), which are instances of the respec-
tive MOOSE classes.

Objects in MOOSE communicate with each other
by means of “messages”. A message is a persistent
connection between two objects, which allows them to
exchange information during a simulation. An example
of messaging is shown in Fig. 7 which depicts how
one can model synaptic transmission in MOOSE. A
SpikeGen object called spike monitors the mem-
brane potential Vm of the presynaptic compartment
A, via the message labelled message 1. When this
membrane potential crosses a certain threshold, spike
interprets it as an action potential and sends the spike
time to the SynChan (short for “Synaptic Channel”)
object called syn. This triggers the opening of the
synaptic channel, and syn sends the synaptic current
to the postsynaptic compartment B, via the message
message 3.

MOOSE provides a user- and developer-friendly
framework to run parallel simulations on a cluster. It

Fig. 7 Illustration of the
MOOSE messaging structure.
Two compartments are
connected by a synapse

hides MPI-based communication behind an interface
so that sending and receiving information to and from
foreign objects looks the same to the developer as with
local objects. For the user, the design is such that a
serial simulation script can be run in parallel right away,
without any changes. In particular, for inspecting and
manipulating objects and their fields and messages, the
same script commands work in serial and in parallel op-
eration. During object creation, a load-balancer decides
which process the object should be created on.

Implementation of the MOOSE-MUSIC Coupling

New Classes

Five new MOOSE classes were created to allow
MOOSE to exchange spike times with MUSIC:

• Music—This is a singleton class with exactly one
instance automatically created at the start of a
MOOSE session.
This object is responsible for making most of the
basic MUSIC API calls in the correct order. This
includes appropriate initialization and finalization
by managing the MUSIC Setup and Runtime
objects. Also, during a simulation, this object calls
MUSIC’s tick() function periodically, separated
by a user-specified time interval.
While this Music object carries out the above with-
out user intervention, it also provides an interface
which the user can use to create new MUSIC ports
for sending and receiving spike-event information.

• InputEventPort—An instance of this class is
created when the user calls a function of the above
Music class to declare readiness to receive spike-
event information. Upon creation, this object finds
out the width of the corresponding MUSIC port
by making a MUSIC API call. A corresponding

162 APPENDIX A. PUBLICATIONS



52 Neuroinform (2010) 8:43–60

number of instances of the InputEventChannel
class (described next) are then created.

• InputEventChannel—Instances of this class act
as proxies within MOOSE of the spike-generating
entities in the sending application. They receive
spike-time information relayed by MUSIC and
recreate the original spike-train by emitting the
spike-times locally. Hence, within MOOSE, they
appear as bona fide spike-generating objects which
can connect to, e.g. a SynChan object, and send
spike messages just like a SpikeGen object can.

• OutputEventPort—This class is analogous to
the InputEventPort, and is instantiated by
the user when MOOSE should act as a spike-
generating application. Like before, an instance of
this class creates the same number of instances of
the following OutputEventChannel as is its own
width.

• OutputEventChannel—Objects of this class can
receive spike-time messages from other MOOSE
objects, like a SynChan object can. Upon receiving
a spike, an OutputEventChannel object passes
it on to MUSIC, which forwards it to interested
applications.

Note that if the user creates a port of width m in
a parallel simulation with n processes, then m chan-
nel objects (i.e., instances of InputEventChannel
or OutputEventChannel) will have to be distrib-
uted among the n processes. An algorithm is built
into the port classes (i.e., InputEventPort and
OutputEventPort) to carry out this distribution,
without the need for the user’s knowledge. At present,
this algorithm is simple: the list of m is divided into n
blocks of size approximately equal to m/n, and chan-
nels within each block are created on a separate node.
In the future, this algorithm can be improved by placing
the channel objects in the same process as the objects
they connect to.

Interfacing with MUSIC in MOOSE

With the above classes at hand, it is simple for a user
to incorporate MUSIC sources and sinks in a simula-
tion. The user carries out the following steps to set up
MOOSE-MUSIC communication:

• Specifying tick() rate—The user provides a time
interval which is used to call MUSIC’s tick()
function periodically. This is done by setting up a
“clock” with the desired time interval as its clock-
rate, and attaching it to the instance of the singleton
Music class. See online supplementary material,

Section E, for an example MOOSE script, which
has commands to carry out all steps mentioned
here.

• Adding ports—The user declares the ports through
which MOOSE can receive and send data via
MUSIC. One script command has to be issued for
every port added.

• Connecting MUSIC with the model—With the
above two steps done, the user has MUSIC sources
and sinks available as native MOOSE objects.
From here on, it is intuitive for a user to route
MUSIC-originating and MUSIC-destined data to-
and from desired entities in a model. This is done
by simply adding messages, in the usual MOOSE
fashion, between objects representing MUSIC, and
objects constituting the model. Note that in adding
a message, the user need not do anything special
if the source and destination objects are situated
in different processes, since MOOSE will carry

F
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m
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U
S

IC

process #0

process #1

process #2

Instance of
InputEventPort

Instances of
InputEventChannel

MOOSE messages Neuronal model
in MOOSE

Fig. 8 A model in MOOSE receiving spike-time informa-
tion from MUSIC. An object of type InputEventPort
handles spike-times relayed by MUSIC. Objects of type
InputEventChannel act as proxies for the spike-generating
entities in the foreign application. The proxies forward the spikes
to targets in the model via messages. Note that it is possible for
a message to connect a proxy and its target even if both are in
separate processes. It is most efficient, however, if they are on
the same process

163



Neuroinform (2010) 8:43–60 53

out the correct setup internally. This situation is
depicted in Fig. 8.

Performance and Application

The adaptation of NEST and MOOSE to MUSIC
allows us to test the performance of MUSIC and to
apply the framework to a multi-simulation connecting
two very different models. We test the performance of
MUSIC in two typical multi-simulation examples: (1)
an asymmetric multi-simulation benchmark with one
large-scale model that is connected bidirectionally to
a second program that runs on a single process (see
Fig. 9a) and (2) a symmetric multi-simulation bench-
mark with MUSIC connecting two large-scale models
each running on multiple processes (see Fig. 9b). For
simplicity, we use NEST for the benchmarks presented
here. As a complete application example, we present a
multi-simulation that connects two very different mod-
els: a cortical network model based on integrate-and-
fire units in NEST and a striatal network model based
on multi-compartmental units with Hodgkin-Huxley
formalism in MOOSE.

In Section “Benchmarking MUSIC with a Corti-
cal Network Model in NEST” we describe consecu-
tively the model definition and the performance of the
cortex model, the asymmetric multi-simulation bench-
mark and the symmetric multi-simulation benchmark.
Section “A MUSIC Multi-simulation with NEST and
MOOSE” then describes the multi-simulation connect-
ing the cortex and the striatum network and shows
simulation results.

Fig. 9 Benchmark models. a Asymmetric benchmark model
consisting of one large-scale cortex model and a single process
relay model. Inter-model communication via MUSIC is bidi-
rectional but asymmetric, mainly from the cortex model to the
relay model. b Symmetric benchmark model consisting of two
interconnected large-scale cortex models. Communication via
MUSIC is symmetric between the two models

Benchmarking MUSIC with a Cortical Network
Model in NEST

We use a layered cortical network model (Potjans
and Diesmann 2008) in NEST in order to assess the
performance of MUSIC for large-scale simulations.
It consists of 80,000 integrate-and-fire units divided
among four layers (2/3, 4, 5 and 6) and around 0.3
billion synapses. Each layer contains one excitatory
(e) and one inhibitory (i) population. Populations are
connected randomly with layer- and type-specific con-
nection probability. In all benchmark simulations, we
use static synapses. The integration step size is 0.1 ms
and the minimal delay in the network is min_delay
= 0.8 ms. The network exhibits asynchronous irregular
activity with layer- and type-specific firing rates for
stationary, homogeneous background input. The mean
firing rates range from below 1 Hz to maximally 8 Hz
(Potjans et al. 2009).

Performance of the Cortex Model

From the computational perspective, simulating this
model is a rather lightweight job on modern compute
clusters. We simulate the model with NEST on a ×86
cluster consisting of 23 nodes: each node is equipped
with two AMD Opteron 2834 Quad Core processors
with 2.7 GHz clock speed and running Ubuntu Linux.
The nodes are connected via InfiniBand; the MPI im-
plementation is OpenMPI 1.3.1. Our simulation setup
first distributes the processes to nodes, resulting in a
single process per machine and InfiniBand port up to
23 processes. Figure 10a shows the computing time
per second of biological time as a function of the
number of cores on this system: black squares show
the data for the default installation of NEST, gray
diamonds when linking NEST during compilation to
MUSIC. The overlap of the data points shows that the
performance of NEST is not impeded when using the
MUSIC communicator; the performance is the same
when NEST is compiled by default with the configure
switch −−with−music. In both cases, the simulation
time of the layered cortex model scales supralinearly
up to 20 cores and linearly up to 24 cores, yielding a
simulation time of only 8 s per second of biological
time. A further increase of the number of processors
still improves the simulation time; using 48 cores results
in a simulation time of around 5 s. The suboptimal scal-
ing when increasing the number of processes from 24 to
32 is due to limited memory bandwidth that comes into
play when multiple processes run on a single compute
node. Beyond 32 processes the scaling is again close to
optimal linear scaling. This simulation represents the
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Fig. 10 Performance of the layered cortical network model
and the asymmetric multi-simulation benchmark. a Computing
time per second of biological time as a function of the number
of compute cores. Gray diamonds show the performance of
the cortex model simulation when NEST is compiled without
MUSIC, black squares the performance when compiled with
MUSIC. The dotted line indicates the expectation for linear

speed-up. b Computing time per second of biological time of the
asymmetric multi-simulation benchmark. The number of cores
corresponds to the number of cores used for the cortex model
without the additional core for the relay network. The shown data
corresponds to NMUSIC = 8 (black circles) and NMUSIC = 71, 000
(gray triangles); the dotted line gives the expectation for linear
speed-up

control simulation for the asymmetric multi-simulation
benchmark.

Asymmetric Multi-simulation Benchmark

The asymmetric multi-simulation benchmark consists
of two models implemented in NEST: the cortex model
and a basic relay model (see Fig. 9a). The models are
coupled bidirectionally via MUSIC, i.e. both models
send/receive spike events to/from the other model. Ba-
sically, we record spikes from any population in the
layered network and transmit them to the relay model.
The relay model takes few of the transmitted spikes
and sends them back to the sender population. The
communication is layer- and type-specific: we transmit
the spikes to/from any population in the cortex model
separately.

The relay model is kept minimal. It consists of one
parrot_neuron for every population in the cortex
model; this neuron immediately emits a spike for every
spike it receives. The parrot_neurons receive a sub-
set of the spike trains transmitted from its population
in the cortex model from the corresponding music_
in_proxys in the relay model and sends its spikes to

the corresponding music_out_proxy. Therefore we
always have a fixed number of eight MUSIC channels
transmitting spikes from the relay model to the cortex
model.

The implementation of the benchmark requires
changes to the cortex model script and the relay script.
But as the communication with MUSIC is carried
out by nodes—music_out_proxys and music_in_
proxys—the multi-simulation NEST scripts do not
differ fundamentally from scripts describing stand-
alone simulations. We create and connect music_
out_proxys and music_in_proxys for any popula-
tion in the model as described in Sections “Sending
Events from NEST to MUSIC” and “Receiving Events
from MUSIC in NEST”, respectively. In addition,
we have to set the acceptable latency with the
SetAcceptableLatency() command. Care has to be
taken in order to arrive at consistent parameters in the
NEST scripts and the corresponding MUSIC script of
the multi-simulation. On the level of a multi-simulation,
these parameters are the number of MUSIC channels
per population going from the cortex model to the
relay model and vice versa—we call the total number of
efferent MUSIC channels of the cortex model NMUSIC.
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On the level of the NEST scripts, we account for the
asymmetry of a single music_out_proxy with many
music_channels per population on the one hand
and many music_in_proxys with the corresponding
music_channels on the other hand.

Altogether, the asymmetric multi-simulation bench-
mark extends the stand-alone cortex model by the fol-
lowing parameters:

• Ni,x
MUSIC: number of efferents of the cortex model

per population
(i ∈ {2/3, 4, 5, 6}, x ∈ {e, i}). NMUSIC = ∑

i,x Ni,x
MUSIC

corresponds to the number of MUSIC channels
from the cortex model to the relay model and
therefore also to the number of music_in_proxys
in the relay model

• ki,x
MUSIC: number of connections between the

Ni,x
MUSIC music_in_proxys and the corresponding

parrot_neuron in the relay model.

Figure 10b shows the performance of the asymmetric
multi-simulation benchmark for NMUSIC = 8, ki,x

MUSIC =
1 (black circles) and for NMUSIC = 71, 000, ki,x

MUSIC = 4
(gray triangles). For better comparison, we give here
the number of cores used for the cortex model, the relay
model is simulated on one additional core.

We find that the additional costs due to the MU-
SIC interfaces and due to the communication of the
two models via MUSIC are very small. The multi-
simulation scales supralinearly up to 20 cores and the
relative increase in simulation time is well below 10%
of the simulation time of the control simulation without
MUSIC. Further increasing the number of cores still
improves the simulation time below 7 s; only when
using 48 cores, the additional costs lead to an earlier
onset of the saturation of the simulation time. The ex-
cellent performance holds for the minimal case where
we only transmit the spikes of a single neuron from
every population, but also when transmitting almost all
spikes created by the cortex model: We do not observe
a dependence of the number of MUSIC channels/the
number of transmitted spikes for this benchmark.

Symmetric Multi-simulation Benchmark

The symmetric multi-simulation benchmark increases
the demands on software and hardware considerably.
It consists of two reciprocally connected cortex models
(see Fig. 9b). Each model connects, as in the asym-
metric multi-simulation benchmark, via in total NMUSIC

MUSIC channels to the other model. The incoming
spike trains project on ki,x

MUSIC neurons of the cor-
responding population. We choose very low synaptic

weights for the connections between the two models in
order to not interfere with the dynamics of the layered
network. The random connectivity of the networks re-
quires MUSIC to route events not only between single
machines but rather in an all-to-all fashion.

The implementation of this benchmark does not
require any changes to the cortex model script with
respect to the asymmetric multi-simulation benchmark.
The only changes affect the MUSIC script, configuring
two interconnected and equally sized NEST simula-
tions of the same model.

Figure 11a shows the performance of the symmet-
ric multi-simulation benchmark. The given number of
cores corresponds to the multi-simulation with both
models. The control simulation for this benchmark
(black squares) is defined by the multi-simulation of
both cortex models without any connections between
the models (NMUSIC = 0). Only the first data point (16
cores) corresponds to the situation with a single process
per InfiniBand port. Still, we observe linear scaling up
to 24 cores. Beyond this, the simulation time scales up
to 96 cores, yielding a simulation time of 6 s per second
of biological time.

The minimal benchmark (NMUSIC = 8, ki,x
MUSIC = 1,

dark gray diamonds) also exhibits excellent scaling,
but the simulation time increases by 1.3 ± 0.4 s. This
difference in simulation time, however, does not show
a clear dependence on the number of cores. Com-
municating 1,000 spike trains for every population
(NMUSIC = 8, 000, ki,x

MUSIC = 1, 000, light gray circles)
results in an additional increase of 1.3 ± 0.4 s, again
with excellent scaling and no clear dependence of the
increase in simulation time of the number of cores.

In order to understand this increase in simula-
tion time, we simulate the symmetric multi-simulation
benchmark for various values of NMUSIC (keeping
ki,x

MUSIC = 1, 000 constant) and convert the number of
MUSIC channels with the measured firing rates of
the different populations in the cortex model into the
MUSIC spike rate, the total number of spikes that is
transmitted in one biological second from one cortex
model to the other. Figure 11b shows the simulation
time per second of biological time as a function of this
MUSIC spike rate for a fixed number of cores (data
obtained with 32 cores in the multi-simulation is shown
in black, with 64 cores in dark gray). The dashed lines
indicate the control multi-simulations with two uncon-
nected cortex models (NMUSIC = 0). While the asym-
metric multi-simulation benchmark is independent of
the MUSIC spike rate (see above), the simulation time
does depend on the MUSIC spike rate for the symmet-
ric multi-simulation. Note, however, that this number
is representing the spike rate transmitted via MUSIC
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Fig. 11 Performance of the symmetric multi-simulation bench-
mark. a Simulation time per second of biological time as a
function of the total number of compute cores for both net-
work models. Black squares show the performance of the con-
trol (NMUSIC = 0), dark gray diamonds the benchmark’s perfor-
mance for NMUSIC = 8 and light gray circles for NMUSIC = 8, 000.
The dotted line indicates the expectation for linear speed-up of

the control. b Simulation time per second of biological time as
a function of the MUSIC spike rate. Simulations with 32 cores
are indicated in black, with 64 cores in dark gray. Dashed lines
indicate the control (NMUSIC = 0) and squares show the data for
the symmetric multi-simulation benchmark with light gray lines
showing the corresponding linear fits

in every direction and that the information has to be
routed to all processes running the corresponding cor-
tex model. We find that the simulation time increases
linearly with the MUSIC spike rate (light gray lines
indicate the linear fit). For 32 cores, the simulation time
increases by 0.56 s when increasing the MUSIC spike
rate by 10 kHz. For 64 cores, this number is only slightly
increased to 0.6 s/10 kHz in the MUSIC spike rate.

A MUSIC Multi-simulation with NEST and MOOSE

A MUSIC multi-simulation was performed by connect-
ing the layered cortical network model in NEST to a
striatal network model in MOOSE. Activity of both
simulations were visualized using the tool described in
Section “Pre- and Post-processing” (see Fig. 12).

For the live demonstration, we reduced the size of
the layered cortical network model to 8,000 neurons.
The output consisted of spike events generated in the
excitatory population of layer 5 that were exported
through a MUSIC port.

The striatal network model was built using multi-
compartmental units with Hodgkin-Huxley formalism
and consisted of ten striatal medium spiny projection

neurons with 189 compartments each (Wolf et al. 2005;
Hjorth et al. 2008) and ten fast spiking interneurons
with 127 compartments each (Hellgren Kotaleski et al.
2006). The cell models were ported from NEURON

Fig. 12 Schematic of run-time interoperability for a cortico-
striatal model. The cortical model simulated in NEST uses MU-
SIC to send spikes to the striatal model in MOOSE. In addition,
two visualization processes receive the spike information from
both NEST and MOOSE
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Fig. 13 Results from the multi-simulation described schemat-
ically in Fig. 12. To the left, two window captures from 3D
visualizations of the cortex and striatum model are shown. In the
upper half of the figure, 500 outputs from the cortex model in
NEST are visualized on a planar grid, the radii and intensity of

the color of the neurons increase when they spike. In the lower
part, 10 MS (red) and 10 FS (blue) neurons in the striatal network
are visualized in the same manner. To the right are a raster plot of
the cortical activity and voltage traces for the MS and FS neurons

and GENESIS, respectively, to MOOSE. In this re-
duced version of the striatum for the MUSIC demon-
stration, no GABAergic connections were included
between the two neuron populations. A MUSIC input
port delivered spike events to both populations.

A short MUSIC configuration file described the
multi-simulation and specified connections between the
cortex output port and the striatum input port, and

also connections from both models to one instance each
of the visualization tool. Figure 13 shows captures of
windows from the simulation tool instances together
with simulation results from each model.

Since the MUSIC API enforces independence be-
tween the applications, the multi-simulation could be
built from the cortex model and the striatum model
without changes to their simulation scripts in other

168 APPENDIX A. PUBLICATIONS



58 Neuroinform (2010) 8:43–60

respects than the creation of MUSIC ports and the ad-
dition of the cortico-striatal projection on the receiver
side. Spike events from NEST could easily be routed
to MOOSE as well as a visualization process without
further changes to the simulation scripts.

Discussion

The multi-simulation described in the previous section
is a demonstration of how MUSIC can promote inter-
operability between models written for different sim-
ulators and how these can be re-used to build larger
model systems. Alternative approaches to run-time in-
teroperability are object-oriented frameworks (as illus-
trated by MOOSE itself; see Cannon et al. 2007) and
using a common standard model description language.

Object-oriented frameworks provide APIs for ser-
vices such as solvers, scheduling of events and com-
munication, while specialized modules correspond to
entities in the neuronal model. In comparison, the
MUSIC API is slim, essentially only providing what is
necessary to support communication through MUSIC
ports. In a sense, the approach of MUSIC is orthogonal
to that of an object-oriented framework, implying that
these approaches can, in fact, be combined, as illus-
trated by the MOOSE simulation in this article. Writing
a module for an object-oriented framework usually
means a commitment to that framework. On one hand,
the object-oriented framework lifts some of the bur-
den of implementation by providing services. On the
other hand, it will only be possible for the module to
communicate with other modules in the same object-
oriented framework. In contrast, any simulator or tool
supporting the MUSIC interface can be connected to
the rest of the set of tools supporting MUSIC. In fact,
any module written for an object-oriented framework
which supports MUSIC will also be possible to connect
to such tools supporting MUSIC.

One example of a framework targeting a similar
problem domain as MUSIC is the component-based
extension framework by King et al. (2009). This frame-
work provides three APIs, one for a compute en-
gine, exemplified by a specially compiled version of
NEURON (Carnevale and Hines 2006), a message-
bus component, allowing the encapsulation of a spike
communication algorithm, and, a monitoring, analysis
and control component. This framework could, as MU-
SIC, be used to set up multi-simulations and promote
interoperability and re-use of existing components.
While both solutions are non-exclusive in the sense
that they could potentially co-exist with each other

and/or other communication frameworks, MUSIC does
not require the re-organization of an existing simu-
lator into a library providing the compute engine API
and is in this way less invasive. Also, MUSIC ab-
stracts connectivity at two levels, as ports and as shared
global indices within ports, thereby making it possible
to easily connect pluggable components into different
configurations specified by a configuration file. The
component engine API leaves the handling of the low-
est level of connectivity entirely to the user (in the
form of NEURON “gids”). This creates dependen-
cies between the configurations of components of a
multi-simulation so that the re-use of a tool requires a
different mapping of gids.

The approach of a common standard model descrip-
tion language, such as PyNN (Davison et al. 2009) or
NeuroML (Crook and Howell 2007; Crook et al. 2007),
enables the same model description to be used with
different simulators. This circumvents the difficulty
of reimplementing models when moving them from
one software to another. This approach also has the
strength that it makes the model future-proof. But
even in the presence of such a standard, we cannot
combine two models of different kinds (for example a
model based on integrate-and-fire units and a model
based on Hodgkin-Huxley formalism) if our favorite
software does not support both forms of modeling.
Ultimately, we must recognize the value in specialized
tools optimized for a particular purpose. A scripting
language environment such as Python can bind tools
together by loading them as libraries (Ray and Bhalla
2008). MUSIC is another alternative. Thus, we again
see that MUSIC should be seen as providing orthogonal
functionality.

Apart from interoperability, MUSIC also provides
efficient communication between parallel applica-
tions enabling multi-simulation of large-scale neuronal
systems.

One of the strengths of the MUSIC API design is
that it allows for establishing a deterministic communi-
cation schedule which removes the need for handshak-
ing. This has also been exploited in the implementation.
The downside of this design choice is that new MUSIC
ports cannot be added once the simulation is run, as
MUSIC cannot change back to the setup phase once
the runtime was entered. It is conceivable, though, that
a future version of the standard could allow for changes
to the communication graph during simulation without
requiring handshaking during communication.

The adaptation of NEST to MUSIC was straightfor-
ward. The changes were not extensive and fell naturally
into the existing structure of the code. MUSIC concepts
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such as ports were mapped to NEST proxies, MUSIC
events could be routed by the proxies into the stan-
dard spike event delivery mechanisms. In the NEST
simulator kernel, only five of the existing compilation
units were affected: the scheduler and the units for
MPI communication, network administration, scripting
language binding and error handling. New compilation
units were added for the MUSIC event handler and
the NEST representations of MUSIC ports (music_
out_proxy, music_in_proxy). The handling of the
MUSIC Setup and Runtime objects was encapsulated
in NEST’s Communicator class.

NEST implements an error handling strategy based
on C++ exceptions. Several new exception classes have
been added to be used upon errors related to MU-
SIC. Unfortunately it is not possible to recover from
errors during a MUSIC multi-simulation, as interactive
simulations are not supported. Therefore NEST uses
the function MPI_Abort() to quit the simulator upon
errors. This also quits all remote applications.

Very little had to be changed in MOOSE to adapt it
to MUSIC, and the changes here fit naturally into the
MOOSE code structure. The five classes mentioned in
Section “New Classes” were defined in fewer than 1000
lines of C++ code, and no changes were made in the
basic MOOSE infrastructure. This was possible due to
the compact MUSIC API, and was facilitated by the
modular design of MOOSE.

Where possible, MOOSE allows the user to han-
dle MUSIC related errors. For example, the user can
inspect the isConnected field on MOOSE objects
representing MUSIC ports, and choose to quit the sim-
ulation, or continue without MUSIC communication,
in case a port was found to have not been connected
successfully. At present, MPI exceptions are left unhan-
dled by MOOSE, causing MOOSE to abort in case of
errors at the MPI level.

While MUSIC supports communication of events,
continuous values and messages, currently only spike
event communication has been implemented in NEST
and MOOSE.

The asymmetric multi-simulation benchmark
(Section “Asymmetric Multi-simulation Benchmark”,
Fig. 10) shows that linking with MUSIC and using the
MUSIC communicator does not affect performance. It
also shows that normal communication loads through
MUSIC ports do not add significantly to simulation
time. In order to test performance under heavy
communication load, the symmetric multi-simulation
benchmark (Section “Symmetric Multi-simulation
Benchmark”, Fig. 11) provided a situation where every
MUSIC channel in one application communicates

spikes to neurons on every MPI process in the other
application. MUSIC adapts both the spatial and
temporal communication scheme to the topology of
the multi-simulation, but the pilot implementation
of the MUSIC library only uses pair-wise MPI
Send() and Receive(). For a uni-directional one-
to-one projection this would mean communication
in one step at longer intervals. For the symmetric
benchmark this instead implies a complete pair-
wise exchange at every min-delay (minimum axonal
delay between the applications). This partly accounts
for the difference between no connectivity (black
squares) and NMUSIC = 8 (dark grey diamonds)
in Fig. 11a. However, the linear dependence on
the number of spikes transmitted via MUSIC in
Fig. 11b can also be attributed to the additional
load due to the collection and delivery of spikes
by music_out_proxys and music_in_proxys in
NEST. While the pair-wise communication gives most
efficiency for multi-simulations that do not require
all-to-all communication, a future version of the library
could switch to the use of, for example, Allgather()
when the number of inter-process communication pairs
are of O(#processes). Another interesting development
would be to use non-blocking communication over
the MUSIC library inter-communicators between
tick() calls, during the time when the application is
computing or communicating.

We conclude that MUSIC fulfills the design goal
that it should be simple to adapt existing simulators
to use MUSIC. In addition, since the MUSIC API
enforces independence of the applications, the multi-
simulation could be built from pluggable component
modules without adaptation of the components to each
other in terms of simulation time-step or topology of
connections between the modules. Preliminary results
from benchmarks of two reciprocally connected large-
scale versions of the layered cortical network model
(one magnitude larger than the model simulated in
this article) also indicate good performance and scaling
behavior. We would like to encourage the community
to continue building on a sharable base of MUSIC-
enabled simulators and tools for the easy construction
of multi-simulations.
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Djurfeldt, M., Johansson, C., Ekeberg, Ö., Rehn, M., Lundqvist, M., & Lansner, A. (2005).
Massively parallel simulation of brain-scale neuronal network models. Technical Report
Technical Report TRITA-NA-P0513, KTH, School of Computer Science and Communication
Stockholm, Stockholm.



176 BIBLIOGRAPHY

Djurfeldt, M., & Lansner, A. (2007). Workshop report: 1st incf workshop on large-scale
modeling of the nervous system. Nature Precedings. doi:10.1038/npre.2007.262.1.

Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö., & Lansner, A. (2008).
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Ekeberg, Ö., & Djurfeldt, M. (2009). MUSIC — Multi-Simulation Coordinator, Users Manual
(1st ed.). Karolinska Institutet, Nobels väg 15 A, SE-171 77 Stockholm, Sweden: INCF.
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Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.

Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same axon of
neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95(9), 5323–5328.

Martin, R. C., Riehle, D., & Buschmann, F. (Eds.) (1998). Pattern languages of program
design 3. Reading, MA: Addison–Wesley.

MathWorks (2002). MATLAB The Language of Technical Computing: Using MATLAB.
Natick, MA. 3 Apple Hill Drive, Natick, Mass. 01760-2098.

McConnell, S. (2004). Code Complete: A practical handbook of software construction (2nd
ed.). Redmond, Washington, USA: Microsoft Press.

Message Passing Interface Forum (1994). MPI: A message-passing interface standard. Tech-
nical Report UT-CS-94-230.

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., & Hines, M. (2006). Parallel network
simulations with NEURON. J Comp Neurosci 21, 119–223.

Morrison, A., Aertsen, A., & Diesmann, M. (2006). Spike-timing dependent plasticity in
balanced random networks. In Computational Neuroscience Meeting, Edinburgh, U.K., pp.
77.

Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing dependent plasticity in
balanced random networks. Neural Comput. 19, 1437–1467.

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic
plasticity based on spike-timing. Biol. Cybern. 98, 459–478.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing
the boundaries of high connectivity network simulation with distributed computing. Neural
Comput. 17(8), 1776–1801.

Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold in-
tegration with continuous spike times in discrete time neural network simulations. Neural
Comput 19, 47–79.

Muller, E., Kremkow, J., Davison, A., & Brette, R. (2009). Workshop on python in neuro-
science at the 18th annual computational neuroscience meeting.
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