
A Multithreaded and Distributed System for
the Simulation of Large Biological Neural
Networks

Diploma Thesis by Jochen Martin Eppler
Submitted April 2006

Albert-Ludwigs-University
Freiburg

First Reviewer: Prof. Dr. Gerhard Schneider
Chair of Communication Systems, Faculty for Applied Sciences

Second Reviewer: Juniorprof. Dr. Markus Diesmann
Computational Neurophysics, Institute of Biology III

Co-Supervision: Dr. Abigail Morrison
Computational Neurophysics, Institute of Biology III

Bernstein Center for Computational Neuroscience

i

Contact Information

Jochen Martin Eppler

Computational Neurophysics, Institute of Biology III
Bernstein Center for Computational Neuroscience
Albert-Ludwigs-University

Hansastraße 9a
79104 Freiburg
Germany

Telephone: +49 761 203 9530
Fax: +49 761 203 9559
Email: eppler@biologie.uni-freiburg.de

ii

Acknowledgements

This thesis would have never been possible without the help and support of many people.

I would like to thank Prof. Dr. Schneider for the opportunity to write this faculty spanning
thesis. For the excellent supervision and the patience all along the way I want to thank Abigail
Morrison and Markus Diesmann. I particularly appreciate the stimulating discussions in the
great working atmosphere at the Hansastraße in Freiburg.

I am grateful to Hans Ekkehard Plesser, who implemented the original express kernel, which
was the basis for my work.

I especially want to thank Marc-Oliver Gewaltig and the people at the Honda Research Insti-
tute Europe in Offenbach for the numerous debates and guidance through the dark valleys of
multi-threaded programming and debugging.

Big thanks go to my parents for their care and backing that made my study possible in the
first place. A broad smile goes out to my fellow students that made this episode in my life as
much fun as possible ;-)

Finally, my very special thanks for her love and the mental support goes to Marion. Your
endurance and strength in all the years is incredible. Thank you!

This work was carried out in the framework of DAAD Grant 313-PPP-N4-lk (to Abigail Mor-
rison, Hans Ekkehard Plesser and Markus Diesmann) and was partially supported by BMBF
Grant 01GQ0420 to the Bernstein Center for Computational Neuroscience Freiburg. Further
support came from the Honda Research Institute.

iii

Zusammenfassung

Die Simulation großer neuronaler Systeme wird immer mehr zu einem Grundpfeiler der mod-
ernen Neurobiologie. Dies geschieht aus zwei Gründen: zum einen sind Simulationen ein
wichtiges Werkzeug um Fragen zu klären, die nicht durch Experimente oder analytische Meth-
oden verfolgt werden können, zum anderen können sie Anregungen für neue Experimente
liefern. Das Gehirn von Säugetieren ist eine sehr komplexe Struktur mit bis zu 1012 Neuronen.
Jedes dieser Neuronen erhält Eingänge von ca. 104 Neuronen und produziert Ausgangssignale
für etwa die gleiche Anzahl. Wenn realistische Verbindungswahrscheinlichkeiten angenommen
werden enthalten die resultierenden Netzwerke mindestens 105 Neuronen und 109 Verbindun-
gen (Synapsen). Dies entspricht etwa einem Kubikzentimeter Cortex (Braitenberg & Schüz,
1998). Da die Anatomie kortikaler Strukturen immer besser verstanden wird, können Wis-
senschaftler immer bessere Modelle von neuronalen Schaltkreisen in Computersimulationen
erforschen. Die große Zahl von Neuronen und Verbindungen führt jedoch zu langen Simula-
tionslaufzeiten und erfordert viel Speicher, weshalb hochspezialisierte Simulationsprogramme
benötigt werden. Diese Arbeit beschreibt drei wichtige Erweiterungen für das Simulationspro-
gramm NEST, die in folgende Kategorien fallen:

Parallele und verteilte Simulation: NEST benutzt Multithreading für die parallele Simulation
und ist deshalb auf Ein- oder Mehrprozessormaschinen beschränkt. NEST wird so er-
weitert, dass Simulationen auf Computer-Clustern ausgeführt werden können, während
lokal weiterhin mehrere Threads benutzt werden können.

Erweitertes Verbindungskonzept: In NEST werden Verbindungen zwischen Neuronen in einem
starren System gespeichert, das die Simulation synaptischer Plastizität erschwert. Ein
neues System beseitigt diese Einschränkung und unterstützt außerdem die verteilte Sim-
ulation und einen verteilten Aufbau des Netzwerkes.

Performanceverbesserungen: Das Skalierungsverhalten von NEST war ungenügend. Durch
verschiedene neue Erkenntnisse über geeignete Algorithmen und Datenstrukturen aus
einem Vorläuferprojekt konnte die Leistungsfähigkeit erheblich verbessert werden. Das
Skalierungsverhalten der neuen Implementation wird diskutiert.

Die im Rahmen der vorliegenden Arbeit erstellte Implementation bildet die Grundlage für die
NEST2 Release.

iv

Contents

1 Introduction 1

1.1 Overview . 1

1.2 State of Research . 2

1.2.1 The Simulation Language Interpreter 2

1.2.2 The NEST Simulation Kernel . 4

1.2.3 The Paranel Simulation Kernel . 5

1.2.4 Comparing NEST and Paranel . 6

1.3 Task Definition . 7

1.3.1 Multithreaded and Distributed Simulation 7

1.3.2 Connection Management . 8

1.3.3 Interpreter Integration . 8

1.3.4 Reproducibility . 8

1.3.5 Performance Improvements . 8

1.4 Layout of the Thesis . 8

2 Network Representation 10

2.1 The Network in NEST . 10

2.2 The Network in NEST2 . 12

2.2.1 Virtual Processes . 12

2.2.2 Assigning Nodes to Virtual Processes 12

2.2.3 Accessing Nodes in Virtual Processes 12

2.2.4 Random Number Generation and Reproducibility 14

2.2.5 Multithreaded Representation . 14

2.2.6 Distributed Representation . 16

3 Network Elements and their Interaction 18

3.1 Nodes . 18

3.1.1 Node Types . 18

3.1.2 Ring Buffers . 22

3.1.3 Memory Management . 23

3.1.4 Node Construction . 23

3.2 Events . 24

CONTENTS v

4 Connection Management 25

4.1 Connectors and Connection Prototypes . 26
4.1.1 Data Compression . 27

4.2 Establishment of Connections . 27
4.2.1 Type Checking . 28
4.2.2 Distributed Connection . 29
4.2.3 Calculation of the Minimal and Maximal Connection Delay 30

4.3 The SLI Interface . 31
4.3.1 Connection Functions . 31
4.3.2 An Example SLI Session . 31
4.3.3 Building and Connecting a Small Network 33

5 Simulation 35

5.1 Strategic Considerations . 35
5.2 The Scheduler of NEST2 . 36
5.3 Definitions . 36
5.4 Network Calibration . 37
5.5 Network Update . 38
5.6 Communication . 41
5.7 Time Evolution . 43
5.8 Event delivery . 44

6 Performance 46

6.1 Performance on Multiprocessor Computers . 46
6.2 Scaling on Computer Clusters . 48
6.3 Cache Effects and Superlinear Scaling . 48

7 Discussion 51

7.1 Conclusion and Summary . 51
7.2 Critique . 52
7.3 Outlook . 53

Bibliography 55

vi

List of Figures

1.1 The architecture of NEST . 2

1.2 Scalability of NEST and Paranel with respect to number of processors 6

2.1 UML diagram for class Network . 10

2.2 Network representation as adjacency list . 11

2.3 Network representation on virtual processes using lookup tables 13

2.4 Network representation on virtual processes using proxy nodes 14

2.5 Comparison of memory layout with respect to cache utilization 15

2.6 Multithreaded network representation . 16

2.7 Distributed and multithreaded network representation 17

3.1 UML diagram for class Node . 18

3.2 Class hierarchy for nodes . 19

3.3 Illustration of thread safe and non thread safe ring buffers 22

3.4 Memory allocation using different allocators 23

3.5 UML diagram for class Event . 24

4.1 UML diagram for class ConnectionManager 26

4.2 UML diagram for class Connector . 26

4.3 The connection structure . 28

4.4 Sequence diagram for the connection type check 29

4.5 Connections in a distributed simulation . 31

4.6 The different connection functions . 32

4.7 A small example of a neural network . 33

5.1 Schematic comparison of simulation strategies 35

5.2 The NEST2 simulation loop . 36

5.3 UML diagram for class Scheduler . 37

5.4 Definitions of time in NEST . 37

5.5 Sending a direct sending event via the event hook() 40

5.6 Illustration of event buffering . 41

5.7 Illustration of the CPEX algorithm . 42

5.8 Preparation of comm buffers for inter-process communication 42

5.9 Sequence of comm buffer readout . 45

5.10 Sending an event to its target nodes . 45

LIST OF FIGURES vii

6.1 Scalability of NEST, NEST2 and Paranel on SMP machines 47
6.2 Scalability of NEST2 and Paranel on computer clusters 48

7.1 The interpreter in a distributed environment 54

1

Chapter 1

Introduction

1.1 Overview

The simulation of large neuronal system has come to play a major role in the fast growing field of
computational neuroscience. This has happened mainly for two reasons: first, simulations are
an important tool to investigate and answer questions which are not tractable by experimental
or theoretical methods and second, they can inspire new experiments. However, the mammalian
brain is a very complex structure. It contains up to 1012 neurons, each of them receiving
input from approximately 104 neurons and generating output for about as many. If realistic
levels of connectivity are to be maintained, the resulting networks need at least 105 neurons
with 109 connections (synapses). This corresponds to approximately one cubic millimeter of
cortex (Braitenberg & Schüz, 1998). Because more and more is known about the anatomy of
cortical structures, researchers are able to build detailed models of neural circuits that can be
explored in computer simulations. The large number of neurons and connections in biological
systems, however, results in long simulation times and high memory requirements and require
sophisticated simulation applications.

Several tools for neural simulations exist, but most of them focus on the detailed morphol-
ogy of individual nerve cells in order to capture their internal electrical dynamics. The detailed
simulations these programs allow are expensive in terms of computation time and memory,
moreover, they are not optimized for large neuronal systems and are thus only applicable for
the simulation of single neurons or small neural networks. In this domain, the simulation pro-
grams Genesis (Bower & Beeman, 1997) and Neuron (Carnevale & Hines, 2006) have become
the de facto standard due to their large user base.

Simulation programs that aim at models of large neural systems require simpler neuron
models. Most of them use so-called point-neuron models (MacGregor, 1987), which have only
one or a small number of electrical compartments (Larkum et al., 2001). But only a few
simulators are targeting this kind of simulations. This thesis describes two extensions to the
Neural Simulation Tool NEST that improve its flexibility and performance by adding support
for distributed simulation and an extensible connection framework.

CHAPTER 1. INTRODUCTION 2

1.2 State of Research

NEST is a two-layered system, which is written in C++ (Stroustrup, 1997). The bottom layer
consists of the simulation kernel, the top layer of a simulation language interpreter (SLI),
which is the user interface to NEST. The separation of kernel and interpreter makes it possible
to set up simulations in an easy way and, at the same time, run the simulations in the highly
optimized kernel without the need for any (possibly slow) interpreter-kernel interaction. The
name NEST is used for the simulation program as well as for the simulation kernel, a distinction
is noted where necessary. An illustration of NEST’s architecture and operational range is shown
in figure 1.1.

Workstations SMP Machines

Simulation Kernel (multithreaded)

Simulation Language Interpreter

Figure 1.1: The architecture of NEST: The simulation language interpreter (top layer) offers
a convenient interface to the simulation kernel (bottom layer). The program can be run on
desktop and workstation computers as well as on SMP machines.

In 1999 the simulation kernel was forked and a new kernel, Paranel (Morrison et al.,
2005), was developed to support the distributed simulation of neuronal networks on multiple
computers. However, Paranel did not use the simulation language interpreter, but required
the re-compilation of the program for each simulation. At the same time, a second simulation
kernel, NEST, was developed to implement parallel simulation on a single computer using
multithreading. The NEST kernel also uses the simulation language interpreter SLI.

1.2.1 The Simulation Language Interpreter

Using a simulation language interpreter has the advantage that simulations can be set up
interactively without the need to recompile the simulation program every time a parameter is
changed, or something has to be tried in an explorative way. This is important in the early
phase of an experiment, where the right parameters still need to be found.

The simulation language of NEST is a simple, but complete programming language (Dies-
mann et al., 1995; Diesmann & Gewaltig, 2002) whose syntax is based on PostScript (Adobe
Systems Inc., 1991). SLI uses post-fix notation in which the arguments in all expressions are
entered before the name of the function that uses them. For example, the SLI expression for
adding the two numbers 1 and 2 is ’1 2 add’. SLI includes commands to create, manipulate
and connect neural elements. It also has the usual control structures, operations, and data
structures found in other programming languages. SLI has a strict type system that allows
parameter checking and fine grained error handling. New commands can be implemented in
C++ or in the simulation language itself.

CHAPTER 1. INTRODUCTION 3

Because of the simple syntax of the SLI language, it is easy to use the interpreter as a
virtual machine for program generated code. This allows to interface the interpreter from
other programs to provide online data analysis and observation of simulation results. The two
interpreters can exchange commands in the respective language of the partner. Interfaces to
Mathematica (Wolfram, 2003), IDL (Research Systems Inc., 1987) and Python (Lutz, 2001)
exist. Moreover, current work on a MATLAB (MathWorks, 2002) interface will add a graphical
user interface to NEST.

We will illustrate the key features of SLI in a small example (modified from Gewaltig &
Diesmann (2006)) that simulates a neuron receiving input from an excitatory and an inhibitory
neuron population. Both populations are modeled by Poisson spike generators. The simulation
program tries to find an appropriate firing rate for the neurons of the inhibitory population
such that the neurons of the excitatory population and the target neuron fire at the same given
rate. In the first part, the simulation parameters are assigned to variables.

1e3 ms / t s im Set

16000 / n ex Set

4000 / n i n Set

5 .0 Hz / r e x Set

12 .5 Hz / r i n Set

45 .0 pA / epsc Set

−45.0 pA / i p s c Set

1 .0 ms /d Set

5 .0 Hz / l owe r Set

25 .0 Hz / upper Set

0 .001 Hz / p re c Set

The second step creates the elements for the simulation. This is done by the SLI command
Create that expects a neuron type and will return a handle to the new element. The Command
Set stores the handles in variables for later reference.

i a f n e u r o n Create / neuron Set

p o i s s o n g e n e r a t o r Create / ex pop Set

p o i s s o n g e n e r a t o r Create / i n pop Set

s p i k e d e t e c t o r Create / s p i k e s Set

The third part of the simulation script configures the parameters of the spike generators.
This is done by the command SetStatus, which expects the handle of a node and a dictionary
as arguments. A dictionary is a set of name/value pairs, which is delimited by the symbols <<
and >>. By using named parameters (Finkel, 1996) it is possible to keep the class interface of
the elements small and avoid fat interfaces (Stroustrup, 1997).

ex pop << / r a t e r e x n ex mul >> SetStatus

i n pop << / r a t e r i n n i n mul >> SetStatus

The fourth part connects the two populations with the neuron, as well as the neuron with
the spike detector. The command Connect is available in two variants. The first variant has
four arguments: the handles to the pre- and post-synaptic nodes, as well as the weight and
the delay of the connection. The second variant of Connect does not need values for weight
and delay, but uses default values of 1.0 for each of them. Both versions return handles to the
connections, which are discarded, using the command pop.

CHAPTER 1. INTRODUCTION 4

ex pop neuron epsc d Connect pop

i n pop neuron i p s c d Connect pop

neuron s p i k e s Connect pop

In order to determine the optimal rate of the neurons in the inhibitory population, the
network is simulated several times for different values of the inhibitory rate while measuring
the rate of the target neuron. This is done until the rate of the target neuron matches the
rate of the neurons in the excitatory population. The algorithm is implemented in two steps:

First, a function (OutputRate) is defined to measure the firing rate of the neuron.

/OutputRate {
/ gue s s Set

i n pop << / r a t e gue s s n i n mul >> SetStatus

s p i k e s << / e v en t s 0 >> SetStatus

t s im S imu l a t e
s p i k e s GetStatus / e v en t s get t s im d iv

} def

The function takes the firing rate of the inhibitory neurons as argument and stores it in a
variable. The inhibitory Poisson spike generator is then configured accordingly. Next, the spike-
counter of the spike detector (/events) is set to zero and the network is simulated for 1 second.
The command Simulate takes the desired simulation time in milliseconds and evaluates the
network for the given amount of time. During simulation, the spike detector counts the spikes
of the target neuron and the total number can be read out after the simulation period. The
return value of OutputRate is the mean firing rate of the neuron.

In the second step, the SLI function FindRoot is used to determine the optimal firing rate
of the neurons of the inhibitory population.

{OutputRate r e x 1 . 0 e3 d iv sub} l owe r upper p r e c FindRoot

FindRoot takes four arguments: the first argument is a function whose zero crossing has
to be determined. In SLI, the characters { and } define a pure function without a name. Pure
functions can be assigned to variables or serve as arguments for other functions (Finkel, 1996).
Here, the firing rate of the target neuron should equal the firing rate of the neurons of the
excitatory population. The next two arguments are the lower and upper bound of the interval
in which the zero crossing is sought for. The final argument is the desired precision of the zero
crossing.

1.2.2 The NEST Simulation Kernel

NEST is the third generation simulation kernel. In previous versions, the elements were commu-
nicating by directly calling their member functions. This is the most general way of interaction,
however, it makes parallel processing impossible, since every element has access to the data
members of all other elements at any time. In NEST the elements communicate by exchanging
events (see section 3.2) which encapsulate and transport data. This flexible way of communi-
cation will be covered in more detail in chapter 5. NEST has a generic element concept, where
the network elements, including the devices, are derived from a common base class. This base
class defines the interface to create, configure, and connect elements section 3.1. A special
class of elements are sub-networks that group elements of a network. Thus it is possible to
divide a large system into smaller pieces to model parts like cortical areas.

CHAPTER 1. INTRODUCTION 5

Each network element stores a list of all elements it is connected to, along with the pa-
rameters for each connection. In particular, the weight of the connection (i.e. amplitude of
the post-synaptic potential) and the transmission delay (see chapter 4). This static represen-
tation of the connectivity, however, renders simulations of learning and plasticity very difficult,
because it is not easily possible to change the connection weight by a learning algorithm that
depends on the activity of both connected neurons.

To provide a convenient user interface to the simulation infrastructure, NEST is integrated
with the simulation language interpreter, which has been explained in section 1.2.1.

The NEST kernel supports parallel network simulation by using multiple threads on SMP1

and desktop computers. The program is executed in multiple threads (Lewis & Berg, 1997)
that all have full access to the data of the program. On SMP machines several threads can
be executed in parallel and solve a common task. They do not require a special communi-
cation infrastructure, as each of them has access to the same variables. Thus, in principle,
multithreading allows near optimal use of a computer’s processing power and memory. But
multi-threaded programming is difficult and can lead to severe performance problems (see
section 1.2.4).

1.2.3 The Paranel Simulation Kernel

The Paranel simulation kernel is a branch of the first generation simulation kernel and was
developed to investigate how simulations can be distributed over networked computers. While
multi-threaded simulations only run in one process on a single computer, distributed simula-
tions run in several processes that may be distributed to multiple computers. An interesting
advantage of distributed simulation is that each computer not only contributes its computing
power, but also its memory. This was the main motivation to implement the Paranel kernel.
Thus, Paranel can solve problems that would exceed the memory of a single computer. But,
since different parts of the simulation run in different processes, Paranel must solve two prob-
lems: first, it must divide the simulation into equal chunks and assign them to the processes.
Second, each process needs to send its spike data to the neurons on remote processes.

The first problem is solved by assigning the neurons to the processes by using a simple
modulo operation. This leads to an equal distribution of the elements. The second problem
is solved by using an external library that passes messages between processes in a network of
computers. There are a number of different libraries available for this purpose. Paranel uses
the Message Passing Interface (MPI, Message Passing Interface Forum, 1994).

Because Paranel is derived directly from the first generation of the simulation kernel (Dies-
mann et al., 1995), it still suffers from problems that are already solved in later versions. Some
of these problems are:

• Neurons and devices do not share a common interface or base class.

• It is not possible to structure networks or build hierarchical networks.

• Interaction between neurons is restricted to spikes.

• The user cannot easily inspect or modify the parameters of a neuron, device, or neuronal
connection.

1The term SMP will refer to all shared memory multiprocessor architectures, see Tanenbaum (1999)

CHAPTER 1. INTRODUCTION 6

Paranel, however, features a flexible system to connect neurons. Different synapse proto-
types are available that can be used to model learning, e.g. synaptic short term dynamics (e.g.
Tsodyks et al., 1998) or spike-timing dependent plasticity (Morrison et al., 2005). Moreover,
Paranel can compress the connection information in several ways to reduce the memory require-
ments. Paranel does not use the simulation language interpreter SLI for network setup and
administration. Thus, the simulation program has to be re-compiled every time a parameter
has to be changed.

1.2.4 Comparing NEST and Paranel

One can can directly compare the absolute simulation time and the scaling of Paranel and
NEST, by simulating the same network with both simulation kernels. The results of this
comparison are shown in figure 1.2. Part (A) shows the absolute run times of NEST (solid
line) and Paranel (dashed line) in log-log representation. The gray line indicates linear scaling,
meaning that the run time Tn with n processors is given by Tn = T1

n
. Part (B) shows the

speedup of NEST (solid line) and Paranel (dashed line) in log-log representation. The speedup
sn with n processors is defined as sn = T1

Tn
(see chapter 6). The gray line again indicates linear

speedup. In both panels it is obvious that Paranel has better scaling than NEST: if executed
on 8 processors, Paranel has a speedup of about 16. In contrast, NEST’s scaling is not even
linear and seems to saturate with more than 2 processors.

(A)

processors

ru
n

tim
e

[s
]

1 2 4 8

10

25

50

100

200

300

(B)

processors

sp
ee

du
p

1 2 4 8
1

2

4

8

16

32

Figure 1.2: Scalability of NEST and Paranel with respect to number of processors: The network
contained 104 neurons, with 1000 random connections each; the exact model is described in
Brunel (2000). Solid line: NEST; dashed line: Paranel. The gray line indicates linear speedup.
(A) Simulation time against number of processors, log-log representation. (B) Corresponding
speedup (see equation 6.1) against number of processors, log-log representation.

What are the reasons for the large performance difference between NEST and Paranel?
The main reason is the different memory layout of the two kernels: In Paranel, each process
has its own region of memory and is assigned to one processor. NEST uses multiple processors

CHAPTER 1. INTRODUCTION 7

within a single process. This means that all threads use the same region of memory. As modern
processors compute much faster than the memory can deliver data, each CPU contains a cache
as fast working memory. If two processors operate in different regions of the memory, they
can optimally use their cache. This is the case for Paranel. And since each processor also
adds cache memory, Paranel scales better than linear. However, if two processors work in the
same region of memory, one of them has to reload its cache from the slow memory. This
is called cache thrashing and is a common problem of multithreaded applications. Because
NEST stores all network nodes in a contiguous piece of memory, it is very likely that two or
more threads will operate on the same memory region. This causes the other processors to
reload their cache. Since the probability for cache thrashing increases with each additional
thread, this explains the bad scaling of NEST (see section 2.2.5).

For the simulation of neuronal systems, the speed of memory access is more critical than
the processing speed. This is because the elements are individually cheap to update but highly
interconnected. In Paranel, the number of memory accesses is reduced by keeping the data
in the processor’s cache as long as possible. The exact algorithm allowing this is described in
section 5.5.

Another problem of NEST is its static connection representation, in which the synapses
are stored distributed across all elements, each of them containing its own target list. This
representation does not support plasticity and learning synapses. The connection system in
Paranel, however, is more flexible and supports different synapse types, which can be used to
implement heterogeneous networks.

Multithreaded programming requires thread safe data structures which can be critical to
the performance of a program. However, this way of programming provides great flexibility,
because class objects can call each other’s member functions directly. This is not the case
with distributed simulation, where each exchange of data between the processes requires special
treatment, i.e. packing by the sender, sending, and unpacking by the receiver.

1.3 Task Definition

My task for this thesis is to integrate the two simulation kernels NEST and Paranel into a
new simulation kernel. Instead of developing a new kernel from scratch, we start with the
NEST kernel, which already contains many of the desired features. Features that are superior
in Paranel or missing in NEST, will be added to the new kernel. What follows, is a list of
desired properties for the new kernel.

1.3.1 Multithreaded and Distributed Simulation

Multithreading is a flexible technique for parallel computation on SMP machines. It offers
fast interaction between the elements ranging from simple spikes to the exchange of arbitrarily
complex data. For this reason we will further develop this approach, although its performance
is not optimal at the moment. To allow simulations that are larger than the memory available
on a single computer, we need distributed simulation. This has the additional advantage that
the network construction can be parallelized.

The first step is to port the communication facilities from Paranel to the NEST kernel.
For this, we must modify the representation of the elements and their connections. Moreover,

CHAPTER 1. INTRODUCTION 8

the scheduling algorithms and data structures have to be adapted.

1.3.2 Connection Management

The connection framework of Paranel has some distinct advantages over NEST. It supports
different synapse types to build heterogeneous networks, learning, and plasticity. Because of
the differences in the representation of elements, it is impossible to port Paranel’s system
directly. My objective is to implement a new connection framework for NEST with all the
features of Paranel’s connection system.

1.3.3 Interpreter Integration

The simulation language interpreter is a convenient interface user interface and spares the user
from re-compiling the program after parameters changes. Two innovations in the new kernel
require modifications and extensions to SLI:

1. The new connection framework requires commands for SLI to manipulate synapses and
defaults for the synapse types.

2. We also want to use the interpreter for distributed simulations. This is a problem, since
the interpreter is based on a simple stack machine (Aho et al., 1988), which is inherently
serial. The easiest solution is not to use the interpreter interactively, but to use one
interpreter per process and have the kernel functions pick the relevant commands from
a script. An interactive mode for the interpreter is described in chapter 7.

1.3.4 Reproducibility

Reproducibility means that a program will yield the same result if it is run several times with
the same parameters. This is the normal behavior for uniprocessor computers. On computers
with more than one processor, however, this may no longer be true, since the order in which
different threads are executed is not deterministic. It is an important requirement for the new
simulation kernel that it produces the same results when it simulates with multiple threads or
in many distributed processes. To be more precise, it should yield the same results for any
simulation, distributed or multi-threaded, where the number of virtual processes (number of
processes × number of threads) is kept constant.

1.3.5 Performance Improvements

We want the new kernel to scale as well as Paranel. This can be achieved by using the
algorithms and data structures from Paranel for both, multithreaded and distributed simulation.
This will reduce NEST’s cache problems by separating the memory of each thread.

1.4 Layout of the Thesis

In chapter 2, the data structures and algorithms for the network setup are introduced. This
includes the elements as well as the connections between them.

CHAPTER 1. INTRODUCTION 9

Chapter 3 explains the construction of elements, their functionality, and their member variables.
It also introduces The events that are used during connection setup and for the interaction of
elements during simulation.

Chapter 4 explains the new framework for connection establishment and event transmission.
The last section gives some examples for the SLI interface to the new connection subsystem.

Chapter 5 introduces the algorithms and data structures necessary for the scheduling of the
simulation. The event delivery mechanisms are explained together with the communication
between processes.

In chapter 6, the benchmark results are presented together with a theoretical analysis of the
scaling behavior. The benchmarks compare the absolute run time and scalability of NEST,
NEST2 and Paranel.

Finally, chapter 7 contains a discussion of the solutions that were developed in this thesis and
compares them to alternative approaches together with ideas for possible future developments.

10

Chapter 2

Network Representation

The simulation kernel has two main classes: the network class, which stores the network
elements and their connections, and a scheduler class, which is responsible for updating the
network and which will be explained in chapter 5.

A neural network can be seen as a directed graph, in which the vertices denote the neural
elements (nodes) and the edges represent the connections between them. The class diagram
in figure 2.1 shows the most important data members and functions of class Network.

Network

models: vector<Model*>

nodes: vector<Node*>

scheduler: Scheduler

add node(): void

get node(id:int, thread:int): void

template<class NodeT> register model(name:string): void

send(event:Event&, lag:int): void

send to node(event:Event&, lag:int): void

Figure 2.1: UML diagram for class Network: The most important member variables (top part)
and functions (bottom part) of class Network.

The elements of the network are created by factory objects, so-called models (see sec-
tion 3.1.4). Models are added to the network’s models list during initialization by calling
register model(). A model’s position in the list is called its model id. Nodes are created by
using the SLI command Create, which expects the model id as argument. Create then calls
the C++ function add node(), which creates a new node from its model and stores the node
in the nodes list. The two functions send() and send to node() are used for event delivery
during simulation and will be explained in section 5.8 and section 3.2, respectively.

2.1 The Network in NEST

In NEST, a network is represented as the directed graph G, defined as G = (V,E), where V
is the set of vertices and E ⊆ V × V the set of directed edges. For storing the network on a

CHAPTER 2. NETWORK REPRESENTATION 11

computer, the graph can be represented as adjacency matrix (Gross & Yellen, 1999). A sparse
matrix can be represented more compactly as adjacency list that stores the target lists for each
node in the network. Figure 2.2 shows an example network in this representation.

(A)

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

(B)

Node Target List

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

11

11

14

13

7

8,13,14

12

4,11

10

6,8

6

6

3,9

2,5

Figure 2.2: Network representation as adjacency list: A small example of a neural network
consisting of 15 nodes: 1 Poisson spike generator (pg), 13 integrate-and-fire neurons (iaf),
and 1 voltmeter (vm). (A) The network as a directed graph. The edges of the graph contain
a node’s global id and its type, separated by a colon. (B) The corresponding adjacency lists.
Each node is assigned a list of its targets.

In the original NEST kernel, the network is represented by an adjacency list that is stored
distributed in the target lists of each node. This network representation has the following
problems that complicate the implementation of the new features:

1. It is not possible to distribute the simulation, which means that the network size being
limited by the amount of local memory.

2. The network is is constructed by only one thread. This leaves the other threads idle and
may take a lot of time for large networks.

3. The thread that updates a node will also write this node’s events to the input buffers
of all targets, which may belong to another thread. This causes two problems: first,
cache thrashing occurs whenever the input buffers of a node are written. Second, we
need to prevent that two threads access the same data simultaneously. Both are severe
performance bottlenecks especially for generator devices (e.g. random spike generators,
see section 3.1.1) that deliver large amounts of data.

4. The connection information is hidden in the nodes. Thus, it is difficult to access the con-

CHAPTER 2. NETWORK REPRESENTATION 12

nection parameters for performing learning and plasticity algorithms (see section 1.2.4).

2.2 The Network in NEST2

To achieve a representation of the network that is suited for both distributed and multithreaded
simulation, the network is split into several chunks that are assigned to threads or processes.
Every node is then assigned to exactly one chunk.

In order to gain more flexibility for the connections, we explicitly store them in the kernel,
separated from the nodes. A new object, the ConnectionManager, connects nodes, adminis-
trates connection information, and delivers events during simulation. In the following section,
we will only describe the new network representation. The details of the new connection
framework are the topic for of chapter 4.

2.2.1 Virtual Processes

The network is split into several parts by introducing virtual processes. Each virtual process is
responsible for one part of the network. Virtual processes are independent of the actual number
of threads and processes and combine the different network representations for multithreaded
and distributed simulation in one abstract description. Each virtual process stores its nodes in
a vector<Node∗> that is referred to as its node list.

2.2.2 Assigning Nodes to Virtual Processes

The fact that each node is updated by a single thread introduces a performance bottleneck
for devices (see section 2.1). This bottleneck is removed in NEST2 by replicating the device
nodes once for each virtual process. The connection algorithm in section 4.2 is built so that
connections of neurons from and to devices are established always with the device on the
neuron’s virtual process. This way, from the view of an individual node, all connections appear
to be on the same virtual process, which effectively splits the computational load over all
virtual processes. To keep the creation time and memory overhead minimal, the devices are
created as children of sub-networks, which provide efficient construction by using the memory
allocator (see section 3.1.3).

In contrast to the devices, the neuron nodes are created only once. Each virtual process
has an unique id. To distribute the nodes evenly across the virtual processes, each node
is assigned to exactly one of them. The id idv of the virtual process a node belongs to is
given by idv = idn mod T , where idn is the global id of the node and T the number of
overall virtual processes. This distribution algorithm is the best approach for the general case,
where nothing is assumed about the activity in the network. For structured networks where
the communication patterns are known in advance, a better strategy may always exist. This
problem is also addressed in the discussion in chapter 7.

2.2.3 Accessing Nodes in Virtual Processes

The modulo algorithm used for the distribution of the neurons has consequences for way the
nodes are addressed inside the virtual process they are assigned to: If no precautions are taken,
the nodes are stored in the node lists in order of creation, as seen figure 2.3. This requires a

CHAPTER 2. NETWORK REPRESENTATION 13

lookup table in each virtual process to map the global id of a node to its index position in the
nodes list. This table has to be used for every node access and adds an indirection for each
access.

(A)

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

(B)

15

12

8

4

1

vm

iaf

iaf

iaf

pg

15

13

9

5

1

vm

iaf

iaf

iaf

pg

15

14

10

6

2

1

vm

iaf

iaf

iaf

iaf

pg

15

11

7

3

1

vm

iaf

iaf

iaf

pg

vp0 vp1 vp2 vp3

(C)

0 - - 1 - - - 2 - - - 3 - - 4

0 - - - 1 - - - 2 - - - 3 - 4

0 1 - - - 2 - - - 3 - - - 4 5

0 - 1 - - - 2 - - - 3 - - - 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lt3

lt2

lt1

lt0

Figure 2.3: Network representation on virtual processes using lookup tables: Same network
as in figure 2.2. (A) The network as a directed graph. (B) The network representation using
virtual processes (vp0, . . . , vp3). The nodes are stored in the nodes lists of the virtual processes
in the order of their creation. The first column shows the node’s global id, the second column
shows its type. (C) Lookup tables for the mapping between global id and local index position.
The nth entry of table lti contains the index of the node with global id n in the nodes list of
virtual process vpi.

Another possibility to solve the addressing problem is to create local proxy nodes for
all nodes that reside in other virtual processes. This does not require a table nor any pre-
calculations for accessing the nodes, but uses the global id of a node as index into the node list
directly. This leads to better performance during connection setup and simulation where node
access id most frequent. Proxy nodes offer the additional advantage that they can be used to
hold additional information about the nodes they represent. In the current implementation,
the proxy nodes store the model id of the real node, thus making it possible to obtain a
complete printout of the network by just looking at one virtual process. The proxy nodes are
built as lightweight derivatives of class Node, but nonetheless may account for a significant
portion of the memory needs for the nodes for large numbers of virtual processes. If this
approach becomes too expensive, the performance penalty of the lookup table may again be
a reasonable alternative (see chapter 7). A representation of the example network onto four

CHAPTER 2. NETWORK REPRESENTATION 14

virtual processes that uses proxy nodes is shown in figure 2.4

(A)

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

(B)

vm

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

pg

vm

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

pg

vm

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

pg

vm

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

proxy

proxy

iaf

proxy

pg

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

vp0 vp1 vp2 vp3

Figure 2.4: Network representation on virtual processes using proxy nodes: Same network as
in figure 2.2. (A) The network as a directed graph. (B) The network representation using
virtual processes (vp0, . . . , vp3). Nodes that are on remote virtual process have local proxies.
The first column shows the node’s global id, the second column shows its type.

2.2.4 Random Number Generation and Reproducibility

In the simulation of neuronal systems, random numbers are needed to set up random con-
nections (see section 4.3.1) or to provide stochastic background activity to a network (see
section 1.2.1). An important property of NEST2 is that a neuronal simulation with an arbi-
trary but fixed number of virtual processes will yield the same results, regardless of the way
(i.e. multithreaded or distributed) it is simulated. To achieve this, each virtual process has its
own random number generator (RNG) with its own seed. Because a node is always assigned
to the same virtual process, it will always access the same RNG. But this is still insufficient to
achieve reproducibility. Additionally, the random numbers must always be drawn in the same
order. This is guaranteed by the connection algorithm that is described in chapter 4.

2.2.5 Multithreaded Representation

On computers with several processors, multithreading allows the network update to be per-
formed in parallel. But we must guarantee that no two threads can write to the same memory
address at the same time. This is usually called thread safety and can be achieved in two
ways:

CHAPTER 2. NETWORK REPRESENTATION 15

1. Algorithmically: The programmer can use barriers, special data structures like mutual
exclusion locks (mutex, see Lewis & Berg (1997))) or semaphores, to protect critical
regions of code. If one thread enters the critical region, it closes the barrier and the
remaining threads must wait until the barrier is re-opened by the first thread at the end
of the region.

2. By the data structure: Since it is safe to simultaneously read from the same memory
location, a data structure is thread safe, it is has separate fields for each thread. The
ring buffers of NEST (see section 3.1.2) are designed by this principle.

We have already mentioned that cache thrashing is a problem in multithreaded program-
ming. When a process is requesting a certain datum from memory, the processor will first
check its cache for the datum d. There are two possibilities:

1. d 6∈ cache (cache miss): fetch the datum from main memory into the cache and proceed.

2. d ∈ cache (cache hit): proceed.

The processor cache has an access time of approximately 1 ns, which is about 10 times
faster than the main memory. This means that a program is executed 10 times faster if it
runs completely in the cache and no main memory access is needed. Moreover, the cache is
usually large compared to the amount of memory requested, so most processors copy not only
the requested datum, but also a surrounding range (a cache line) to their caches to decrease
the probability of a cache miss. In this situation the layout of main memory influences the
effectiveness of the cache strongly, or more precise: it is best, if the data for a processor is
arranged sequentially in the main memory. This is illustrated in figure 2.5 for two different
possible memory layouts.

(A)

...

...

RAM

Cache of Processor 0

0,1 1,1 0,2 1,2 0,3

1,3 0,4 1,4 0,5 1,5

0,1 1,1 0,2 1,2 0,3 1,3

(B)

...

...

RAM

Cache of Processor 0

0,1 0,2 0,3 0,4 0,5

1,1 1,2 1,3 1,4 1,5

0,1 0,2 0,3 0,4 0,5 1,1

Figure 2.5: Comparison of memory layout with respect to cache utilization: Block i, j is
requested by thread i in the jth access, grey blocks indicate the capacity of the cache. (A)
Alternating memory layout: the first cache miss of processor 0 occurs after three successful
attempts. (B) Ordered memory layout: no cache miss for the first five accesses.

In Paranel, the network is distributed on multiple processes and the memory of the different
processes is separate by definition. As every process is executed by one processor, cache
problems are unlikely to occur. NEST2 uses threads and distributed processes, which makes it
more difficult to appropriately separate the memory regions for each processor. The order in

CHAPTER 2. NETWORK REPRESENTATION 16

which network elements are created decides where they will be in memory. A solution to this
problem is the separation of nodes by thread that is performed by the pool allocator of the
models (see section 3.1.3).

The large number of proxy nodes used in figure 2.4 is not necessary for a purely multi-
threaded simulation setup, because all nodes are in the same process and can be accessed
directly. Moreover, we can store all the nodes of all virtual processes in a single node list. The
multithreaded representation of the example network is shown in figure 2.6.

(A)

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

(B)

vm

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

iaf

pg

-

2

1

0

3

2

1

0

3

2

1

0

3

2

-

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

⋃

i=0,...,3

vpi

Figure 2.6: Multithreaded network representation: Same network as in figure 2.2. (A) The
network as a directed graph. (B) The network represented for multithreaded simulation. The
virtual processes are collapsed into a single node list, denoted by the union of vpi, with
i = 0, . . . , 3. The first column shows the node’s global id, the third column shows its type.
The second column contains the number of the thread a node is assigned to; a ’-’ indicates
that a node is created for each thread.

2.2.6 Distributed Representation

If a neuronal simulation is distributed onto multiple processes, the processes have direct access
only to a part of the network and proxy nodes are used as local placeholders for the remote
nodes. Each process can be run either with a single or with multiple threads. Because the
connections are stored separately from the nodes, the distributed network representation is just
an extension of the multithreaded representation, which has been explained above. For the
example network, the distributed network representation is illustrated in figure 2.7, where two
processes with two threads each are used.

CHAPTER 2. NETWORK REPRESENTATION 17

(A)

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

(B)

P0 P1

vp0 vp2 vp1 vp3

(C)

vm

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

pg

-

2

1

0

3

2

1

0

3

2

1

0

3

2

-

vm

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

iaf

proxy

pg

-

2

1

0

3

2

1

0

3

2

1

0

3

2

-

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

P0

(vp0 ∪ vp2)
P1

(vp1 ∪ vp3)

Figure 2.7: Distributed and multithreaded network representation: Same network as in
figure 2.2. (A) The network as a directed graph. (B) A Sketch of the distribution of the
four virtual processes onto two processes, P0 and P1. (C) The node lists of the two processes
contain the nodes of two virtual processes each, denoted by vp0 ∪ vp2 and vp1 ∪ vp3 respec-
tively. The first column shows the node’s global id, the third column shows its type. The
second column contains the number of the thread a node is assigned to; a ’-’ indicates that a
node is created for each thread.

18

Chapter 3

Network Elements and their

Interaction

3.1 Nodes

The network (see chapter 2) is built step by step from single elements, called nodes. Class
Node is the common base class for them and is sufficient to implement a wide range of
neuron models, devices and auxiliary elements. Its prototype is shown in the class diagram in
figure 3.1. In order to keep the interface as general as possible, the base class does not rely
on any information about the internal processes of a node.

Node

global id: int

model id: int

thread id: int

frozen: bool

calibrate(): void

update(steps:int): void

handle(event:EventT&): void

connect sender(event:EventT&): bool

check connection(receiver:Node&): bool

get properties(): Dictionary

set properties(dict:Dictionary): void

Figure 3.1: UML diagram for class Node: The most important member variables (top part)
and functions (bottom part) of class Node. EventT represents an event of arbitrary type that
depends on the actual node.

3.1.1 Node Types

Different node types are derived from the base class Node as shown in the inheritance diagram
in figure 3.2). The derived nodes are either atoms or compound elements. The compounds,
mainly sub-networks, are used to build structured models of cortical circuits and hierarchies.

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 19

They are excluded from the update of the network during simulation, as they simply act as
containers for the atoms, which may either be neuron models or devices and participate actively
in the simulation.

Node

. . . iaf neuron subnet Device

. . . poisson generator Recorder

voltmeter spike detector . . .

Figure 3.2: Class hierarchy for nodes: neurons and sub-networks are derived directly from
the base class, whereas devices and recorders have separate base classes that add additional
functionality.

In the following we will describe the most important member variables and functions of
base class Node (see figure 3.1) that are common for all node types:

global id : Within the network, each node is identified by a unique number, which is called
global id. It is assigned by class Network at the time of the node’s creation.

model id : The model id is a reference to the model object that created the node. Models
are factory objects for nodes and will be explained in section 3.1.4.

thread id : Each node is assigned to exactly one thread. The thread number is stored in the
node’s thread id.

frozen: In order to exclude parts of the network from the updating process, nodes can be
frozen, e.g. sub-networks and proxy nodes are always frozen.

All functions of class Node are virtual and can thus be overloaded by the derived node types
to implement custom behavior. This is shown exemplarily for a typical neuron model, the
integrate-and-fire (I&F) neuron (see listing 3.1). Pure virtual functions are marked with a
star.

calibrate()⋆: In this function, the node can adjust to the global network parameters
before a simulation (see section 5.4). The I&F neuron only adjusts its internal buffers
in calibrate().

update()⋆: During simulation, each thread iterates over its nodes and calls their update()
function (see chapter 5). It computes the new state of the node and, if necessary, sends
events to other nodes. The function receives the number of time steps it has to advance

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 20

its state as argument (steps). Although the events are constrained to a fixed time grid,
a node can, in principle, use any resolution to propagate its state (see section 5.5). The
update() function of the I&F neuron is shown in lines 6 through 14 of listing 3.1, where
a SpikeEvent is created and sent, if the membrane potential has crossed the threshold.
The update is carried out in steps steps.

handle(): This function processes incoming events during simulation. It has to be im-
plemented for each event type a node can receive. The I&F neuron may receive
SpikeEvents (lines 13 to 16), CurrentEvents (lines 23 to 26), and PotentialRequests
(lines 33 to 40). The latter are directly answered by sending a PotentialEvent (lines
35 to 39) to the requesting node.

connect sender(): This function is called on the receiver during the connection type check.
The default implementation of the base class returns false for all event types. For each
event type that a derived node can handle, connect sender() must be implemented
to return true. For the I&F neuron they are shown in lines 18-21, 28-31 and 42-45 of
the listing.

check connection(): This function is called on the sender to check the compatibility of
sender and receiver before a new connection is registered (see section 4.2). In the listing
of the I&F neuron, the connection check is implemented in lines 47 to 53. The function
calls the corresponding connect sender() function on the receiver, which will return
true only the derived node has an implementation for the corresponding event type. A
detailed description of the algorithm for the compatibility check is given in section 4.2.1.

get properties()⋆ and set properties()⋆: These functions are used to retrieve and set
parameters of a node. They correspond to the SLI functions GetStatus and SetStatus,
which have been introduced in the example in section 1.2.1.

1 void i a f n e u r o n : : update (i n t s t e p s)
2 {
3 f o r (i n t l a g = 0 ; l a g < s t e p s ; ++l a g)
4 {
5 // update the i n t e r n a l s t a t e
6

7 i f (mem pot >= th r e s h o l d)
8 {
9 Sp ikeEvent e ;

10 e . s e t s e n d e r (∗ t h i s) ;
11 network . send (e , l a g) ;
12 }
13 }
14 }
15

16 void i a f n e u r o n : : hand l e (Sp ikeEvent& even t)
17 {
18 // b u f f e r the incoming even t f o r l a t e r p r o c e s s i n g
19 }
20

21 bool c o nn e c t s e nd e r (Sp ikeEvent &)

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 21

22 {
23 return true ;
24 }
25

26 void i a f n e u r o n : : hand l e (Cu r r en tEven t& even t)
27 {
28 // b u f f e r the incoming even t f o r l a t e r p r o c e s s i n g
29 }
30

31 bool c o nn e c t s e nd e r (Cu r r en tEven t&)
32 {
33 return true ;
34 }
35

36 void i a f n e u r o n : : hand l e (Po t e n t i a l R equ e s t& r e qu e s t)
37 {
38 Po t en t i a l E v e n t even t ;
39 even t . s e t s e n d e r (∗ t h i s) ;
40 even t . s e t r e c e i v e r (r e qu e s t . g e t s e n d e r ()) ;
41 even t . s e t p o t e n t i a l (mem pot) ;
42 network . s end to node (even t) ;
43 }
44

45 bool c o nn e c t s e nd e r (Po t e n t i a l R equ e s t &)
46 {
47 return true ;
48 }
49

50 bool i a f n e u r o n : : c h e c k c o nn e c t i o n (Node& r)
51 {
52 Sp ikeEvent e ;
53 e . s e t s e n d e r (∗ t h i s) ;
54 e . s e t r e c e i v e r (r) ;
55 return r . c o nn e c t s e nd e r (e) ;
56 }

Listing 3.1: Excerpt from the implementation of the integrate-and-fire neuron.

Neuron models

Different neuron models describe different types of neuronal dynamics. Important examples are
the integrate-and-fire neuron model (Tuckwell, 1988) and the Hodgkin-Huxley neuron model
(Hodgkin & Huxley, 1952). In NEST, each model is implemented as a distinct node type.
The neuron models can be used together with devices to build the desired neuronal systems.
Currently, all implemented neuron models are point neurons.

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 22

Devices

In every neurophysiological experiment there are devices that generate stimuli, measure, and
record neural activity. In NEST, device nodes are derived from a common base class, Device,
which is derived from the top-level base class Node. There are two groups of devices: gen-
erators generate input to the neurons (e.g. currents or spikes) and recorders, which record
different aspects of a neuron (e.g. membrane potential or spike output) and can be used for
observation and visualization of the network activity. The Device base class adds a timer to
the nodes, which controls the start and stop of the device. class Recorder adds a mechanism
for file handling to the Device class that is used by recording devices like voltmeter and
spike detector.

3.1.2 Ring Buffers

During simulation, most nodes receive events that they have to process. Each event is sent
via a connection that has a certain transmission delay. Thus it is necessary to buffer the event
until it is due. Unlike other systems, NEST has no central event queue, but the events are
queued at the receiver’s side in ring buffers. The ring buffers are thread safe, because they
provide separate rings for write accesses by different threads (see figure 3.3 (A)). Although
the buffer is written by all threads in parallel, it is read by only one thread when the node
is updated, Because the current ring buffer segments need to be reset after readout, which
is a write, the thread that updates the node and resets the buffer will inevitably invalidates
the caches of all other threads (processors). This effect contributed significantly to the bad
performance of NEST.

In NEST2, each node is assigned to exactly one thread. The connection system (see
chapter 4) ensures that all connections are set up so that each node only has targets that are
on the same thread, which means that the ring buffers of a node are always read and written by
the same thread. Thus, NEST2 uses a simple ring buffer (see figure 3.3 (B)), which occupies
less memory and does not interfere with other threads. The two different versions of the ring
buffer are illustrated in figure 3.3.

(A)

Rotation

Read Head

t1
t2
t3

(B)

Rotation

Read Head

write

Figure 3.3: Illustration of thread safe and non thread safe ring buffers: For readout of all fields,
the buffer rotates under the read head. (A) Thread safe version. Each segment of a slice is
assigned for writing to a single thread. Arrows depict write access, the ti represent threads.
(B) Non thread safe version. The algorithm has to guarantee thread safe write access.

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 23

3.1.3 Memory Management

The standard allocator in C++ is suited for general needs, but involves some overhead, both
in space and time, that can be avoided by using a custom allocator. The allocator of NEST2
is optimized for efficient creation and destruction of many small objects of approximately the
same size. It manages a separate memory pool for each thread and new objects are automat-
ically allocated in the corresponding memory segment. This facilitates efficient multithreaded
simulation (see section 2.2.5), because collisions are avoided. Figure 3.4 illustrates the memory
allocator of C++ , NEST, and NEST2.

(A)

t1 t3 t2· · · · · ·

Object Data

Administrative Data

(B)

Used
Capacity

(C)

tn

t1

...
...

Figure 3.4: Memory allocation using different allocators: (A) The C++ allocator creates new
objects at an arbitrary location in memory in the order of their creation (indicated by the tis).
Each object is preceded by a block of administrative data. (B) The pool allocator of NEST.
A large block of memory is obtained from the operating system. Objects of identical type
are are created in this block and do not require additional data. (C) In NEST2 each thread
(t1, . . . , tn) has its own pool allocator.

3.1.4 Node Construction

Nodes are created by factory classes (Gamma et al., 1994) that are derived from a common
base class Model. Each type of neuron, device, or sub-network has its own Model class. The
models are implemented as C++ template classes in order to make it as easy as possible to
introduce new node types to NEST. For example, to register the I&F neuron model with the
kernel, the command ’network. register model <iaf neuron>(”iaf neuron”);’ is sufficient. The type
of the model is given as template parameter in angle brackets, the argument in parenthesis is
its name. Models have to be registered with the simulation kernel during initialization. The

CHAPTER 3. NETWORK ELEMENTS AND THEIR INTERACTION 24

kernel assigns a unique id to each model. In addition to construction, models are used to
administrate default values for the different types of nodes. The model dictionary of SLI maps
the numeric model identifier to descriptive names.

3.2 Events

Biological neurons interact mainly by exchanging spikes, which are discrete all-or-nothing
events. Respectively, a SpikeEvent does not contain any information other than the time
of occurrence. For performance reasons, the sender may set the multiplicity of a spike to send
multiple of them within a single event. The devices are using special event types depending
on their task. A current generator is sending CurrentEvents to its targets, which then will
be processed in the next update. Another scheme is used by the voltmeter, which is sending
a PotentialRequest that is answered immediately with a PotentialEvent. For this, the
function Network::send to node() is used, which delivers an event directly to a single node.
Further event types exist that enable the flexible exchange of arbitrary data by the nodes.

Typed event objects solve two problems: first, to check compatibility of nodes during
connection (see section 4.2) and, second, to encapsulate the data for communication between
nodes. All events are derived from the base class Event which provides the attributes and
operations shown in the class diagram in figure 3.5.

Event

stamp: int

delay: int

weight: double

sender: Node*

receiver: Node*

deliver(): void

Figure 3.5: UML diagram for class Event: The most important member variables (top part)
and functions (bottom part) of class Event.

The different types of nodes that were introduced above need different events to transmit
their information to the target nodes. A node can provide event handlers each available event
by overloading the corresponding handle() function (see section 3.1.1). However, nodes are
restricted to a single event type that they can send. This restriction is necessary to satisfy
the requirements of the type checking algorithm that is executed during connection setup
(section 4.2).

In their deliver() function, the standard event types call handle() on the receiving node
with a reference to itself as argument. However, some nodes need to send different data for
each node, e.g. the Poisson generator transmits a random number of spikes to each of its
targets. To support this mechanism, special events (direct sending events) are available that
do not call handle() on the receiver, but event hook() on the sender, with the receiver as
argument. This way, the sender is informed about each of its targets for every delivery it has
issued. The different routes for the delivery of events are described in chapter 5.

25

Chapter 4

Connection Management

The connection framework of NEST2 has been improved to support not only static connections,
but different types of plasticity and learning in neuronal networks. The main class of this new
system is the ConnectionManager, which has the following tasks:

• Store the connection data and allow dynamic changes.

• Provide different synapse types.

• Administrate default values for each synapse type.

• Calculate auxiliary variables during connection setup.

• Provide a convenient SLI interface to the user.

The connection data of the ConnectionManager is stored in so-called Connector ob-
jects. Additionally, this is the place, where learning algorithms, which change the connection
parameters, are implemented. Each Connector is created by a ConnectorFactory that is the
prototype for a synapse type. The prototypes hold default values and provide the SLI interface
to retrieve and set them. The UML diagram in figure 4.1 shows the ConnectionManager and
its components.

The ConnectionManager stores a list of synapse prototypes that are available to connect
nodes to each other. The type for a connection can be selected in SLI by using a prototype’s
unique synapse id, which corresponds to its position in the list. Instead of specifying the type
for each connection separately, a default synapse type can be set, which is stored in the variable
synapse context. Connections are stored by the ConnectionManager in a three-dimensional
data structure, connections (see figure 4.3), in which the innermost array contains Connector
objects that actually store the connection information. Its dimensions represent

1. The thread number of the target node of the connection.

2. The global id of the source node of the connection.

3. The index of the synapse prototype of the connection.

CHAPTER 4. CONNECTION MANAGEMENT 26

ConnectionManager

propotypes: vector<ConnectorFactory*>

connections: vector<vector<vector<Connector*>>>

synapse context: int

connect(source:Node&,target:Node&): void

create connector(thread:int,source id:int): void;

send(thread:int,source:Node&,event:Event&): void

ConnectorFactory Connector
create()

Figure 4.1: UML diagram for class ConnectionManager: The most important member vari-
ables (top part) and functions (bottom part) of class ConnectionManager together with its
main components, Connectors and ConnectorFactories.

4.1 Connectors and Connection Prototypes

Synaptic plasticity changes the connection parameters during simulation. The rules for these
changes are implemented inside of Connector objects, which also store the connection infor-
mation. Each connection consists of a source and a target node together with a connection
weight and a delay. Additionally, a receptor port can be set on the connection to select the
response of the target, e.g. to provide different time constants or to build compartment neuron
models. Different types of Connectors are available that derive from a common base class.
The interface for this base class is shown in figure 4.2. The variables min delay and max delay
are used to store the local extrema determined during connection setup (see section 4.2.3).

Connector

min delay: int

max delay: int

register connection(source:Node&, target:Node&): void

send(event:Event&): void

Figure 4.2: UML diagram for class Connector: The most important member variables (top
part) and functions (bottom part) of class Connector.

In order to reduce memory overhead in the new system, Connectors are only created for
nodes that actually have connections of this type. They are created by the corresponding
ConnectorFactory, which serves as prototypes a particular type of synapse. The prototypes
are created in the initialization process of the simulator and stored in the ConnectionManager’s
prototypes list. In addition to the creation of Connectors, they are used for the administration
of default values and several auxiliary values for this specific type of synapse. The user can
parameterize the synapse types and store them with a new name and id for later use during
simulation setup. A mapping of synapse ids to descriptive names is provided in the synapsedict
dictionary in SLI. In section 4.3, we will present two small examples of the SLI interface to the

CHAPTER 4. CONNECTION MANAGEMENT 27

new connection framework.

The connection system of NEST2 allows the same flexibility as the system in Paranel,
but only the static synapse type of NEST has been re-implemented as Connector for the
new system. It only supports the basic connection parameters sender, receiver, weight, delay
and receptor port and does not implement any dynamic behavior. Currently, work is done
to implement a Connector for synaptic short term dynamics as described in Tsodyks et al.
(1998). Preliminary results are that the system behaves as expected and the findings from
Tsodyks et al. (2000) can be reproduced with NEST2.

4.1.1 Data Compression

The simulation of biological neuronal networks requires a lot of memory. Distributed simulation
allows to simulate networks larger than one machine’s memory by using multiple computers,
but does not reduce the overall memory consumption of a simulation. An important property
of Paranel’s connection system is its ability to compress connection data. In Paranel, several
synapse types exist that do this by storing common values only once. This way, redundancy in
the network can be exploited to reduce the required memory an thus to enable the simulation
of larger networks. With the new connection manager, this is also possible in NEST2. A
discussion of different compression schemes can be found in Morrison et al. (2005).

4.2 Establishment of Connections

In this section, we illustrate how two nodes are connected. In the simplest case, a new
connection is established by calling the SLI command Connect. It takes only two argument: the
global identifiers of the source and target nodes. Several high-level routines for the connection
of whole populations are based on this simple version and will be described in section 4.3.1.
The algorithm connect() is shown as pseudocode in listing 4.1.

1 void Connect ionManager : : connect (Node& source , Node& t a r g e t)
2 {
3 i f (t a r g e t . type = proxnode)
4 return ;
5

6 t i d ← t a r g e t . t h r ead ;
7 s i d ← s ou rc e . i d ;
8 s ou rc e ← network . g e t node (s i d , t i d) ;
9 i f (c o nn e c t i o n s [t i d] [s i d] [s c] = 0)

10 c r e a t e c o n n e c t o r (t i d , s i d) ;
11 c o nn e c t i o n s [t i d] [s i d] [s c] . r e g i s t e r c o n n e c t i o n (t a r g e t) ;
12 }

Listing 4.1: The connection algorithm. New connections are registered with the Connector

at position (tid, sid, sc) in the connections structure. tid is the thread of the target; sid is
the global id of the source; sc is the current synapse context.

If the target node of a connection is a proxy, the connect() function will return. This
behavior is important for distributed connection setup and will be explained in section 4.2.2.

CHAPTER 4. CONNECTION MANAGEMENT 28

Line 8 calls the function Network::get node() to obtain a pointer to the source node in the
thread of the sender. This is necessary, to connect neurons and devices on the same thread.
The position of the Connector in the connections structure is determined by using the thread
of the target, the global id of the source and the current synapse context (see figure 4.3). If
no Connector exists at that position, the corresponding ConnectorFactory is used to create
it via create connector(). This way, the size of the connections structure is kept minimal,
because Connectors are created dynamically as needed. It has to be noted that connections
is thread safe since it contains separate Connectors for each thread. This is important during
simulation, when multiple threads are used (see section 5.8).

tid.

thread id

si
d

..
.

..
.

n
o
d
e

id

sc.

prototype id

register connection()

Connector
delays

weights
. . .

Figure 4.3: The connection structure: New connections are registered with the Connector at
position (tid, sid, sc). tid is the thread of the target; sid is the global id of the source; sc is
the current synapse context.

In the previous chapter we have shown that virtual processes can be represented without
using proxy nodes for local nodes; proxy nodes are only required for nodes living in remote
processes. This has helped to reduce the memory requirements in multithreaded setups. For
the connection system, they are re-introduced and as anchors for connections which would
otherwise join neurons on separate threads. In this way, from the perspective of an individual
thread, all connections appear to be local, thus minimizing collisions of threads and thus cache
problems (see section 2.2.5). Because the connections are stored separate from the nodes, no
proxy nodes have to be allocated. It is sufficient to keep the size of the node list in connections
(see figure 4.3) equal to the size of Network’s node list.

4.2.1 Type Checking

To make sure that all connection targets can handle the events they will receive during simula-
tion, register connection() implements a type checking algorithm that is executed during
connection establishment. From the kernel’s point of view this type check is static, meaning
that once established, the event type of a connection cannot change. From the C++ point of
view, it is dynamic, because the type check is not carried out during compilation. The com-
patibility of source and target is ensured by Connector::register connection() by calling
check connection() on the source (see listing 4.2), which then calls connect source on
the target. The sequence diagram for check connection() is shown in figure ??. In the base
class, connect source() returns false but may be overloaded in derived node classes for each

CHAPTER 4. CONNECTION MANAGEMENT 29

type of event that the node has to support. Because the update() function of a node can
only send a single type of event (EventT), check connection() needs not be overloaded for
all available events, but only has to test a single type.

bool Node : : c h e c k c o nn e c t i o n (Node& t a r g e t)
{

EventT even t ;
e ven t . s e t s e n d e r (t h i s) ;
e ven t . s e t r e c e i v e r (t a r g e t) ;
return t a r g e t . c o nn e c t s e nd e r (e ven t) ;

}

Listing 4.2: Static connection checking. EventT represents an event of arbitrary type that
depends on the actual node

If connect source() returns true, the target accepts the connection and the connection
information is stored in an appropriate way by the Connector.

connector

Connector

source

Node

event

Event

target

Node

check connection(target)

constructor()

set sender(source)

set receiver(target)

connect sender(event)

return

Figure 4.4: Sequence diagram for the connection type check.

4.2.2 Distributed Connection

If we want to simulate a neural system with many nodes and connections, it may take longer
to create and connect all neurons that it takes to simulate the network. An obvious solution
is to also construct the network in parallel. Each process only registers connections where
the target node is not a proxy node. On computers where the target is a proxy node the

CHAPTER 4. CONNECTION MANAGEMENT 30

connection is ignored. This way the distribution of the nodes leads to a distribution of the
connection information in a natural way and additionally reduces connect time. The following
listing shows again lines 3 and 4 from the connection algorithm (see listing 4.1) and contains
the code to determine whether a connection has to be established in a particular process or
not.

3 i f (t a r g e t . type = proxnode)
4 return ;

There are two possible ways to distribute the connection information onto multiple pro-
cesses in a distributed simulation setup: Either the connections are stored in the process of the
presynaptic node or in the process of the postsynaptic node. The distribution directly influ-
ences the amount of data that has to be sent during the simulation. If we assume a network
where the number of the connections k is a certain fraction c of the number of nodes n, the
following estimation of the number of events holds:

1. Presynaptic storage: For each of the nodes we have to store a target list that contains
all its connections. Let λ be the mean firing rate of the node and k the mean number
of connections a node has, k = cn. Then each process has to transmit λ ·n ·k events to
other machines. For k approaching n this results in O(n2) events. This is the case for
n < 105 in biological networks. For n > 105, the number of connections scales linearly
with the number of nodes and results in O(n) events.

2. Postsynaptic storage: Instead of sending all events to remote processes, the node only
sends the information about the event once. The postsynaptic process is then able to
reconstruct the event locally and deliver it to the local targets. This means that for m
the number of machines, only λ ·n ·m events are necessary. Assuming that m is usually
small compared to k, this results in an overall number of events of O(n).

The lower communication volume was the reason to prefer the second solution for the
implementation of the new connection system of NEST2. Moreover, some kinds of synaptic
plasticity, like e.g. spike-timing dependent plasticity (e.g. Morrison et al., 2005) depend heavily
on the dynamics of the postsynaptic node, which also militates for this scheme. However, things
like presynaptic homeostasis (e.g. Fregnac, 1998) where the presynaptic neuron normalizes its
output are rather difficult to implement with this form of storage.

In figure 4.5 a small network is shown to illustrate where the connections are stored in a
setup with two processes with two threads each.

4.2.3 Calculation of the Minimal and Maximal Connection Delay

For the network calibration (see section 5.4), performed before the simulation, two parameters
are of importance: dmin, the minimal connection delay in the network and dmax accordingly.
These are used to calculate the sizes of the ring buffers (see section 5.4) for event buffering.
As the connections are registered with the Connectors, these have to calculate the new values
for dmin and dmax by comparing them to the old values. Right before the simulation is run,
the ConnectionManager collects the local extrema and calculates the global values that are
used during the simulation. In a distributed scenario, the outcome of each process’ calculation
may be different, because each of them only knows about the local connections (section 4.2).

CHAPTER 4. CONNECTION MANAGEMENT 31

(A)

1:pg

2:iaf

3:iaf

4:iaf

5:iaf

6:sd

(B)

P0

t0 t2

sd

proxy

iaf

proxy

proxy

pg

sd

proxy

proxy

proxy

iaf

pg

P1

t1 t3

sd

iaf

proxy

proxy

proxy

pg

sd

proxy

proxy

iaf

proxy

pg

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

Figure 4.5: Connections in a distributed simulation: A small example of a neural network
consisting of 6 nodes: 1 Poisson spike generator (pg), 4 integrate-and-fire neurons (iaf), and
1 spike detector (sd). (A) The network as a directed graph. The edges of the graph contain
a node’s global id and its type, separated by a colon. (B) The connectivity of the network
distributed on two processes with two threads each. Connections are only established on
threads, where the target node is not a proxy.

To solve this problem, each process has to send a message containing its values to all other
processes to determine the global values.

4.3 The SLI Interface

The SLI interface to the new connection framework will be introduced by presenting two
simulation scripts that make use of the new commands and data structures. First, an overview
of the variants of the new Connect commands is given.

4.3.1 Connection Functions

SLI provides several functions to connect nodes to each other. All of them are built on top of
a single connection function in the kernel (see section 4.2).

Connect takes the global identifiers of two single nodes and connects them (figure 4.6 (A)).

ConvergentConnect takes an array of source nodes and a single node. A connection is
established from each of the source nodes to the target node (figure 4.6 (B)).

DivergentConnect takes a single node and an array of target nodes. A connection is
established from the source node to each of the target nodes (figure 4.6 (C)).

4.3.2 An Example SLI Session

In this section, we will provide a small overview over the commands and data structures of
the new connection framework. Instead by running a script, the commands are executed
interactively at the SLI command line prompt, which is indicated by ’SLI]’.

CHAPTER 4. CONNECTION MANAGEMENT 32

(A)

A B

(B)

...

A1

A2

An

B

(C)

A
...

B1

B2

Bn

Figure 4.6: The different connection functions: (A) Standard connect: connect two nodes. (B)
Convergent connect: connect a population to a single node. (C) Divergent connect: connect
a single node to a population of nodes. The routines for convergent and divergent are also
available in a randomized version that expects the number of connections to be drawn from
the addresses of the population as additional argument.

First, we use the command info to inspect the contents of the dictionary for the synapse
types.

SLI] s y n a p s e d i c t i n f o

−−
Name Type Value
−−
s t a t i c s y n a p s e i n t e g e r t y p e 0
−−
Tota l number o f e n t r i e s : 1

Now, we print out the current synapse context to verify it is set to the only available
synapse type.

SLI] GetSynapseContext

0

In the next step, we want to see the default values for the synapse prototype. Note that
the synapse type is given implicitly by the synapse context. GetSynapseDefaults returns a
dictionary, which we can print again using the info command.

SLI] GetSynapseDefaults i n f o

−−
Name Type Value
−−
we ight doub l e t ype 1
d e l a y doub l e t ype 1 .0
r e c e p t o r p o r t i n t e g e r t y p e 0
−−
Tota l number o f e n t r i e s : 3

The following sequence of commands creates 2 integrate-and-fire neurons and connects
them to each other using the currently active synapse prototype. We verify the connection by
printing the target list of neuron 1.

CHAPTER 4. CONNECTION MANAGEMENT 33

SLI] i a f n e u r o n 2 CreateMany pop

SLI] 1 2 Connect

SLI] 1 GetStatus / conn e c t i o n s get / t a r g e t s get ==
[2]

By using SetSynapseDefaults we can set new default values, here, the default weight is
set to 0.5. Again, the command implicitly applies to the current synapse context. The new
connection is automatically assigned the new weight, which we confirm by printing the weights
list for neuron 1.

SLI] << / we ight 0 . 5 >> SetSynapseDefaults

SLI] 1 2 Connect

SLI] 1 GetStatus / conn e c t i o n s get / we i gh t s get ==
[1 . 0 0 . 5]

4.3.3 Building and Connecting a Small Network

To show the functionality in a more realistic setup, we build the example network that has
been used throughout the description of the different network representations in chapter 2.
For convenience, the network is shown again in figure 4.7

1:pg

2:iaf

3:iaf 4:iaf

5:iaf
6:iaf 7:iaf

8:iaf

9:iaf
10:iaf 11:iaf

12:iaf

13:iaf
14:iaf

15:vm

Figure 4.7: A small example of a neural network: The network consists of 15 nodes: 1 Poisson
spike generator (pg), 13 integrate-and-fire neurons (iaf), and 1 voltmeter (vm). The edges of
the graph contain a node’s global id and its type, separated by a colon.

We start by creating all nodes in a row. The nodes are assigned assigned consecutive global
ids, starting with 1 for the first element, a Poisson spike generator. The Create command
returns a handle to the new node, which we store in variables for later use. CreateMany

returns a handle only to the last node that it created, which we discard by using pop.

p o i s s o n g e n e r a t o r Create /pg Set

i a f n e u r o n 13 CreateMany pop

vo l tme t e r Create /vm Set

The structure of the following code block basically resembles the adjacency list of the
network, which was shown in figure 2.2. Nodes that have multiple targets are connected using
DivergentConnect for convenience.

CHAPTER 4. CONNECTION MANAGEMENT 34

pg [2 5] DivergentConnect

2 [3 9] DivergentConnect

3 6 Connect

4 6 Connect

5 [6 8] DivergentConnect

6 10 Connect

7 [4 11] DivergentConnect

8 12 Connect

9 [8 13 14] DivergentConnect

10 7 Connect

12 13 Connect

13 14 Connect

14 11 Connect

vm 11 Connect

35

Chapter 5

Simulation

5.1 Strategic Considerations

To control the flow of time in computer simulations, two different paradigms are are known:
time-driven and event-driven (Zeigler et al., 2000). Both are illustrated in figure 5.1. In
the first approach, each element is updated on a time grid with fixed spacing, thus time is
driving the simulation. This is a common strategy for simulations of physical systems. All
elements are updated in every time step, regardless if their state has to be changed or not.
This may pose an unnecessarily great load on the simulation machinery if a large number of
elements is simulated. The second approach is inspired by the fact that the elements cannot
be influenced by one another unless an interaction takes place between them. It is sufficient
to update the elements only after an event has arrived and needs to be processed. The flow of
time in this scheme is defined by the order of the events. It is obvious, that the event-driven
approach is most advantageous if the number of events is small in comparison to the overall
number of elements. This is, however, not the case with neural simulations, where the number
of connections that have to carry the events outnumbers the number of elements by several
orders of magnitude.

(A)

Time

el
em

en
ts

(B)

Time

el
em

en
ts

Figure 5.1: Schematic comparison of simulation strategies: Modified from Fujimoto (2000).
A vertical bar indicates a state change of an element. (A) Time driven: each node is updated
on each grid point. (B) Event driven: the nodes are only updated if an event occurs; Note
that state changes are not forced to a fixed time grid.

NEST implements a mixture of time- and event-driven simulation. The neural network is

CHAPTER 5. SIMULATION 36

simulated on a time grid with fixed spacing. The the elements are updated in a loop which
is shown in the flow chart in figure 5.2. In the distributed case, the cycle runs independently
in all processes and is synchronized after each update cycle. For an elaborate discussion of
update strategies, see Morrison et al. (2005).

The state of the network is updated by calling update() on each node that is not in the
frozen state. In each update cycle, the simulation time is advanced by dmin time steps. The
events that are generated during the cycle are buffered for later delivery. To make the local
event buffers available on all remote machines in a distributed simulation setup, the event
buffers are exchanged between the processes after all nodes have been updated. Finally, the
network time is advanced and the events that were buffered beforehand are delivered to their
local targets on each process. The loop is repeated until the specified simulation time has
elapsed.

Deliver Events

Update Network State

Send Events to
other Processes

Advance Network Time

Figure 5.2: The NEST2 simulation loop.

In the following discussion, the serial case will be omitted for clarity. One can always
think of it as multithreaded with one thread. The implementation, however, provides different
algorithms for these cases to avoid possible overhead.

5.2 The Scheduler of NEST2

The algorithms for the control of the simulation and for communication are implemented in
class Scheduler. Its class interface is shown in figure 5.3.

5.3 Definitions

The smallest possible interval of time that can occur in a network is denoted by h and referred
to as a time step. The minimal synaptic propagation delay in a network is called dmin. It is
expressed as integer multiple of h and called a time slice. Let n be the number of the time
slice. Then time slice n begins at T 0

n = n · dmin and ends at T∞

n = (n + 1) · dmin − 1. In
analogy to dmin, dmax is defined as the largest connection delay in the network. Both values
are determined by the ConnectionManager (see section 4.2.3). The above definitions are
depicted in the time diagram in figure 5.4.

CHAPTER 5. SIMULATION 37

Scheduler

spike register: vector<vecor<vector<int>>>

comm buffer: vector<vector<int>>

partners: vector<int>

nodes: vector<vector<Node*>>

calibrate(): void

send remote(thread:int, event:Event&, lag:int): void

communicate() : void

Figure 5.3: UML diagram for class Scheduler: The most important member variables (top
part) and functions (bottom part) of class Scheduler.

h
dmin

Time

T 0

0
T∞

0
= T 0

1

Figure 5.4: Definitions of time in NEST: dmin is the minimal connection delay in the network,
expressed in integer multiples of h. The nth time slice of length dmin begins at T 0

n and ends
at T∞

n .

5.4 Network Calibration

The scheduler must be re-calibrated every time the simulation grid size (h), the number of
threads (t), the number of nodes (n) or the global extrema of for the connection delays (i.e.
dmin and dmax) change. The calibrate() function executes the following steps:

1. It broadcasts the local dmin and dmax to all processes and determines their global values.

2. It computes frequently used constants, so they don’t need to be re-computed during the
simulation

3. It calls the calibrate() function of each node to adjust the node’s parameters and to
compute frequently used constants. To avoid cache related problems during simulation,
the calls to this function are organized in blocks of nodes that belong to the same thread.

4. For each thread t it fills the buffer nodes[t] with references to the nodes the thread must
update.

Calibration of Nodes

Ring buffers (see section 3.1.2) store events that have been received by a node, but that are
not yet due. The size of the ring buffers depends on dmin and dmax. Thus the memory for the
ring buffers can only be allocated after all nodes are connected.

The capacity of the ring buffers is determined by the earliest and latest delivery time of an

CHAPTER 5. SIMULATION 38

event together with the minimum and maximum delay as follows:

• Let 0 be the current ring buffer position, i.e. the position we read from. Events sent by
a device are sent directly and the earliest arrival time will be 1, the latest dmax.

• Events that are sent by neurons are buffered in the spike register and will be delivered
earliest at dmin, latest at dmin + dmax − 1.

Combining both ways of event transmission, we need a capacity of dmin + dmax buffer
elements. The different treatment of events originating from devices and neurons is explained
in the following section.

5.5 Network Update

For every given point in time, the elements in a network are functionally decoupled for a
time interval of dmin. This is used by Paranel in two places: in the node update and in the
communication between processes. For the NEST2 scheduler, the update algorithm of Paranel
has been adapted to exploit the processor cache optimally and limit the number of memory
accesses. It is generally best to compute as much as possible with the data already available
in the processor’s cache. This can be achieved by updating every node dmin times, before
moving on to update the next node. Internally, the node may well use a complete different
time scale to propagate its internal state. This is one of the main differences between NEST
and the NEST2 kernel, where the network has been updated only by one time step h in each
cycle. This means that previously h played the role of the simulation resolution and defined
the grid for network update. In NEST2 it is only used as the default computation time step
onto which the occurrence of events is forces. However, in the work of Morrison et al. (2005)
a scheme for precise spike timing in grid-based simulations of neuronal systems is presented
where an additional floating point number in the event is used to represent fractions of h and
thus achieve sub-grid resolutions.

The update algorithm of NEST2 is implemented in the Scheduler’s update() function
(see listing 5.1), which is called once in every update cycle by each thread with its id t as
argument. and advances all nodes in the thread’s buffer by dmin time steps.

void Schedu l e r : : update (i n t t h r ead)
{

f o r (i n t n i d = 0 ; n i d < nodes [t h r ead] . s i z e () ; n i d++)
nodes [t h r ead] [n i d] . update (s l i c e b e g i n , s l i c e b e g i n + dmin) ;

}

Listing 5.1: The update algorithm of NEST2. This function has to be called once in every
update cycle by each thread. It updates the nodes of the thread by every node dmin in each
call.

NEST dynamically assigns nodes to threads in each cycle. This leads to a high probability
that a node is updated by different threads in each successive update cycle. The consequence of
this is cache thrashing, which results in bad performance because the content of the processor’s
caches is replaced in each cycles. NEST2 does not have this problem, because each node is

CHAPTER 5. SIMULATION 39

assigned to exactly one thread for the entire simulation. The strict assignment of nodes to
threads has the additional advantage, that the ring buffers do not have to be thread safe,
which also reduces the risk of cache thrashing.

Dispatching Events

If a node generates an event in its update() function, it uses Network::send() to deliver
the event to its targets (see listing 3.1). Events from neurons and devices are treated differ-
ently, because devices only can have local targets, whereas the events of neurons also have
to be sent to the remote processes (see section 4.2.2). The route an event take is chosen in
Network::send(), which is shown in listing 5.2.

void Network : : send (Node& source , i n t th read , EventT& e , i n t l a g)
{

e . s e t s t amp (s l i c e b e g i n + l a g + 1) ;
e . s e t s e n d e r (s ou rc e) ;

i f (s ou rc e . type = de v i c e)
connect ion manager . send (th read , e , s ou r c e) ;

e l s e

s c h e d u l e r . s end remote (th read , e , l a g) ;
}

Listing 5.2: The function for sending events in NEST2. At the beginning, the time and sender
are set on the event. Devices send their events directly via the ConnectionManager, events
by neurons are buffered by the send remote function of the Scheduler.

Direct Sending of Events

The function send() of class ConnectionManager will, based on a given thread number and
the global identifier of the source node, forward the event to each Connector of the node. The
Connector’s send() function is shown in listing 5.3. It works by first setting the parameters
receiver, weight, and delay and delivers the event by calling its deliver() function. As
explained in section 3.2, the default implementation of deliver() will call handle on the
target, which then processes the event. The sequence diagram in figure 5.10 shows the steps
that are necessary to deliver an event from a sender to all its targets.

void Connector : : send (Event& e)
{

f o r (i n t i = 0 ; i < t a r g e t s . s i z e () ; i++)
{

e . s e t r e c e i v e r (t a r g e t s [i]) ;
e . s e t w e i g h t (we i gh t s [i]) ;
e . s e t d e l a y (d e l a y s [i]) ;
e . d e l i v e r () ;

}

CHAPTER 5. SIMULATION 40

}

Listing 5.3: The function for sending events in NEST2. At the beginning the connection
parameters are retrieved from the Connector’s representation and set on the event. Then the
event is delivered by calling its deliver() function.

The delivery algorithm explained above sends the same event to each target. Some devices,
however, have to send unique events for each of their targets. An example is the Poisson
generator, which has to draw a random number of spikes for each of its targets. Because the
nodes do not know about their targets in the NEST2 kernel, this is not easily possible. To
solve this problem, a special type of event has been implemented. So-called direct sending
events call event hook() on the sender in their deliver() function. This allows the receiver
to change parameters of the event and re-send it by calling handle() on the target node itself.
This is illustrated in the following sequence diagram (figure 5.5).

sender

Node

event

DSEvent

network

Network

receiver

Node

constructor()

send(event)

deliver()

event hook(event)

handle(event)

for each
target

Figure 5.5: Sending a direct sending event via the event hook().

Event Buffering

In contrast to the events that originate from devices, the events from neurons have to be sent
to local and remote targets and are buffered in the spike register. This is a three-dimensional
data structure where the dimensions represent:

1. The lag inside the time slice.

2. The thread number of the sending node.

3. The event number.

Events are stored in the spike register by the send remote() function of the Scheduler

(see listing 5.4). An example call to send remote() is illustrated in figure 5.6.

CHAPTER 5. SIMULATION 41

void send remote (i n t th read , Event& event , i n t l a g)
{

s p i k e r e g i s t e r [l a g] [t h r ead] . push back (even t . s ende r . i d) ;
}

Listing 5.4: Buffering events for local and remote delivery. At the beginning the event param-
eters are set. Then the event is delivered by calling its deliver() function.

Note that only the global ids of the sending nodes are stored in the spike register. This
restricts the current implementation to the use of SpikeEvents for neuron-neuron commu-
nication. However, this limitation reduces the communication volume and improves the per-
formance of the program. Moreover a trivial solution exists, namely to buffer and send the
complete events. This is also discussed in chapter 7.

tid.

thread id

la
g

..
.

..
.

sl
ic

e
o
ff
se

t

push back(e.sender.id)

Figure 5.6: Illustration of event buffering: A call to Scheduler::send remote(lag, tid,

e) appends the global id of the sender to the corresponding list of the spike register.

5.6 Communication

After the network has been updated, each process has to send its spike information to all other
processes for local delivery. Because the number of processes in a simulation is constant, the
communication partners can be determined before the simulation. Each process is characterized
by a unique number, its rank. The number of the partners are determined by the algorithm
for Complete Pairwise EXchange (CPEX, Tam & Wang, 2000) and are stored in the partners
array of class Scheduler. Each process executes the CPEX algorithm independently and
determines its own partners. The partner for step i is stored at position i in partners. If the
number of processes is odd, one of the processes remains idle in each step and -1 is stored in
the corresponding field of partners. The CPEX algorithm is illustrated for two different setups,
once with five, once with six processes, in figure 5.7.

The events that were generated during the update of the network are stored in the
spike register as it was shown in figure 5.6. To minimize communication overhead, as few
packets as possible have to be sent over the network connection. The number of packets is
reduced by collocating the fields of spike register into a single comm buffer that is then sent

CHAPTER 5. SIMULATION 42

(A)

(B)

Figure 5.7: Illustration of the CPEX algorithm: Modified from Morrison et al. (2005). Setup
with (A) odd and (B) even number of communication partners. Bold lines connect the com-
muncation partners in each step.

to all remote processes by the communication algorithm. To decrease the number of commu-
nication steps, the processes exchange their buffers only after an interval of dmin, the minimal
connection delay in the network. In the comm buffer, the data for the steps of the time slice
is separated by markers. The markers are used on the side of the receiver to reconstruct the
envents (see section 5.8). The collocation of the spike register into the comm buffer is illus-
trated in figure 5.8. It is important to carry out this step in the same way for multithreaded
and distributed simulation to ensure the same order of event delivery, which then guarantees
reproducible results.

(A)

sl
ic

e
o
ff
se

t

thread id
(B)

dmin

Time

Figure 5.8: Preparation of comm buffers for inter-process communication: (A) The
spike register. The bold gray arrow indicates the direction in which the buffer is collocated.
A marker is inserted between each step of the time slice. (B) The comm buffer with markers
(gray blocks). Note that each data block represents a list of spikes from all threads.

The partners list that has been populated by the CPEX algorithm is used in the function
communicate() (see listing 5.5) to ensure that only the minimal number of communication
steps is executed and that no dead-locks will occur. The communication algorithm consists of

CHAPTER 5. SIMULATION 43

a loop that executes the following steps:

• Assign the current communication partner to the variable partner

• If partner is valid (i.e. partner ≥ 0) the process with smaller rank sends its comm buffer
to its partner, while the other one receives. Then the process with larger rank sends and
the partner receives.

void communicate ()
{

f o r (i n t s t e p = 0 ; s t e p < p a r t n e r s . s i z e () ; s t e p++)
{

pa r t n e r = p a r t n e r s [s t e p] ;

i f (p a r t n e r >= 0)
{

i f (rank < pa r t n e r) // sma l l e r p r o c e s s number sends f i r s t
{

Send (comm buffer [rank] , p a r t n e r) ;
Rece i v e (comm buffer [p a r t n e r] , p a r t n e r) ;

}
e l s e

{
Rece i v e (comm buffer [p a r t n e r] , p a r t n e r) ;
Send (comm buffer [rank] , p a r t n e r) ;

}
}

}
}

Listing 5.5: The communication algorithm of NEST2.

The low level communication between the processes is carried out by an external library
that implements the Message Passing Interface (MPI, Message Passing Interface Forum, 1994).
MPI is a library specification for message-passing that is widely used in high-performance com-
puting applications. It offers an abstracted and portable layer for inter-process communication
and several implementations are available for different platforms. In listing 5.5 the use of MPI
is indicated by the Send and Receive functions.

5.7 Time Evolution

After the network was updated and the local event buffers have been exchanged by the pro-
cesses, the system time has to be advanced. Because each node has been propagated by dmin

time steps, the state of the clock is increased by the same amount.

CHAPTER 5. SIMULATION 44

5.8 Event delivery

The main function for sending events is Network::send(). It decides whether the event will
be sent only locally or also to remote targets according to the type of the sending node (see
listing 5.2).

Devices are created once for every thread in the system, thus they are guaranteed to have
only targets local to their thread. Their events may be sent directly to all their targets without
the need for threadsafe data structures. This has already been explained in section 5.5 and
leaves only the events from neurons to be delivered.

The events of neurons also have to be sent to the remote machines for processing. The
Scheduler queues all events sent by these nodes. At the end of the update cycle it transmits
the events by a call to communicate() to remote machines (see section 5.6) so that all
comm buffers are available in each process for local delivery of the events.

In listing 5.6 contains the algorithm for the reconstruction of event time stamps and event
delivery. To enhance readability, it is only shown for a single comm buffer. The sequence
of the complete readout procedure is depicted in figure 5.9. deliver events() is called by
each thread and will only deliver events to the targets that belong to it. The comm buffers
contain only the id of the sending node. This, however is not a problem because the actual
connection parameters are stored on the process of the postsynaptic node and the event can
thus be reconstructed. The markers are used to calculate the time stamp of the event.

void d e l i v e r e v e n t s (i n t t h r ead)
{

l a g ← dmin − 1 ;
f o r (i n t i = 0 ; i < comm buffer . s i z e () ; i++)
{

i f (comm buffer [i] 6= marker)
{

s ou rc e ← network . g e t node (node , th r ead) ;
Sp ikeEvent e ;
e . s e t s t amp (c l o c k − l a g) ;
e . s e t s e n d e r (s ou rc e) ;
connect ion manager . send (th read , e , s ou r c e) ;

}
e l s e

l ag−−;
}

}

Listing 5.6: The event delivery algorithm of NEST2.

The sequence diagram in figure 5.10 shows the route of an event while it is sent to its
target nodes. The ConnectionManager and the Connectors are omitted to reduce clutter.

CHAPTER 5. SIMULATION 45

cb2

cb1

cb0

cb2

cb1

cb0

lag = 2 lag = 1 lag = 0

Figure 5.9: Sequence of comm buffer readout: The fields of the comm buffers are read in
sequence of decreasing lag. This is indicated by the bold gray arrow.

sender

Node

event

Event

network

Network

receiver

Node

constructor()

send(event)

deliver()

handle(event)

for each
target

Figure 5.10: Sending an event to its target nodes.

46

Chapter 6

Performance

A major goal for this work was to improve the overall performance of the kernel by implementing
solutions for the problems that have been identified in an analysis of the existing implemen-
tations. The result of this is that the new kernel scales nearly as good as Paranel on SMP
computers and computer clusters. The following list shows a summary of the specifications of
the computers on which the benchmark simulation was run.

• Sun Fire V40z: 4 processors, Dual Core AMD Opteron 875, 2.2 GHz, 1 MB cache

• PC Cluster: 20 × 2 processors, AMD Opteron 250, 2.4 GHz, 1 MB cache, Dolphin/Scali
interconnect

The neuronal network that was used for the benchmarks has 12,500 neurons with 1000
random connections each and an average spike rate of around 2.5 Hz. The network and its
dynamics are described by Brunel (2000). For a comparative benchmarks between NEST,
NEST2, and Paranel, the same network was implemented once as a C++ program and once
as script for the simulation language interpreter.

An important measure for the performance of parallel applications is their speedup. Let n
be the number of processors. Then the speedup is defined as

S(n) =
run time of the serial program

run time of the parallel program using n processes

=
T1

Tn

(6.1)

The run times and number of processors in the following sections cover a large ranges of
values. It is thus helpful to use logarithmic scales on both axes (log-log representation) in the
figures. Additionally, this means, that linear scaling will yield a straight line.

6.1 Performance on Multiprocessor Computers

On the SMP machine, the network was simulated for 1 biological second. The absolute run
time and the speedup are shown in figure 6.1 for NEST (solid line), NEST2 and Paranel (dashed
line). NEST2 supports both, multithreaded (dotted line) and distributed (dash-dotted line)
simulations. To compare the two modes, they were used pure, meaning that in the first case a

CHAPTER 6. PERFORMANCE 47

single process was run with different numbers of threads, in the latter case different numbers
of processes each with a single thread.

(A)

processors

ru
n

tim
e

[s
]

1 2 4 8

10

25

50

100

200

300

(B)

processors

sp
ee

du
p

1 2 4 8
1

2

4

8

16

32

Figure 6.1: Scalability of NEST, NEST2 and Paranel on SMP machines: The network con-
tained 104 neurons, with 1000 random connections each; the exact model is described by
Brunel (2000). Solid line: NEST; dotted line: NEST2 with multithreading; NEST2 with
message-passing; dashed line: Paranel. The gray line indicates linear speedup. (A) Simulation
time against number of processors, log-log representation. (B) Corresponding speedup (see
equation 6.1) against number of processors, log-log representation.

The NEST kernel shows poor scaling behavior. With more than 2 processors its speedup
does not increase further. Moreover, the run time with 2 processors is not even what would
be expected from the linear estimation, meaning that with two processors it only is about 1.5
times faster than with a single processor. The scaling can mostly be explained by the memory
layout, which does not separate the memory for the threads.

By contrast, Paranel reaches a speedup, that is larger than the linear expectation. This
is called superlinear scaling and will be discussed in section 6.3. An explanation is that the
separation of memory for the processes leads to fewer problems with cache thrashing.

Both simulation modes of NEST2 (multithreading and message-passing) show clear super-
linear scaling, which is a great advance over NEST. Although the simulations run equally fast
on a single processor, the scaling is still not as good as with Paranel. There are two main
reasons for this:

1. Higher memory consumption: device and neurons in NEST2 are larger than the respective
elements in Paranel. This leads to more traffic on the memory bus. Thus collisions are
more likely.

2. Separation of memory: The memory for the different threads in NEST2 is better sep-
arated than in NEST, however Paranel does use different processes that use different
memory ranges by definition.

CHAPTER 6. PERFORMANCE 48

6.2 Scaling on Computer Clusters

Because the run time of the network simulation was already in the range of single seconds with
8 processors on the multiprocessor machine, the simulation time was increased to 50 biological
seconds on the PC cluster to get results that are still significantly different when using 40
processors. The results of this simulation is shown in figure 6.2 for NEST2 with message
passing (solid line) and Paranel (dashed line).

(A)

processors

ru
n

tim
e

[s
]

1 2 4 8 10 20 40
100

200

400

800

1500

3000

6000
8000

(B)

processors

sp
ee

du
p

1 2 4 8 10 20 40
1

2

4

8

16

32

64

Figure 6.2: Scalability of NEST2 and Paranel on computer clusters: The network contained
104 neurons, with 1000 random connections each; the exact model is described by Brunel
(2000). Solid line: NEST2 with message-passing; dashed line: Paranel. The gray line indicates
linear speedup. (A) Simulation time against number of processors, log-log representation. (B)
Corresponding speedup (see equation 6.1) against number of processors, log-log representation.

Again NEST2 and Paranel show clear superlinear scaling. However their speedup returns
to the linear above 20 processors. There the complete program is already in the cache and
additional processors cannot decrease the simulation time any further. For larger networks,
Paranel saturates at a larger number of processor (Morrison et al., 2005). No such simulations
were performed with NEST2.

6.3 Cache Effects and Superlinear Scaling

This section contains an analysis of the scalability of parallel programs (modified from Morrison
& Diesmann (2003)). The discussion follows the presentation of Wilkinson & Allen (2004).
Introductory material can also be found in Tanenbaum (1999). In equation 6.1, the speedup
has been defined as

S(n) =
T1

Tn

,

CHAPTER 6. PERFORMANCE 49

where T1 is the execution time of the serial algorithm of the program and Tn the execution
time of the parallel implementation of the program, executed on n processors. Thus, S(n) is
the relative increase in speed that is achieved by using n processors. This measure combines
characteristics of the software and properties of the computer architecture the program is
executed on. In most cases, no serial version of the program is available and T1 is given by
the execution time of the parallel program on a single processor. The speedup is used to
evaluate the quality of a parallel program and to investigate the theoretical and practical limits
of parallelization. It appears that the maximum speedup is achieved when the problem can be
divided into n equal parts without any overhead:

Slin(n) =
T1

T1/n
= n.

This behavior is called linear speedup. In practical applications we expect sublinear speedup,
because only a part of the program can be parallelized.

Let Tp denote the part of the total execution time that can be parallelized and Ts the
remaining sequential part. Then the run time of the serial program is given by

T1 = Ts + Tp

Constraints of the operating system like the startup time of a process may also contribute to
Ts. In addition, a parallel program typically introduces overhead, like e.g. the communication
between processes, which does not appear in the serial version. If we neglect the overhead
introduced by parallelization, we can write

Smax(n) =
Ts + Tp

Ts + Tp/n

=
1

Ts

Ts+Tp
+

Tp

Ts+Tp
· 1

n

.

Substituting the serial fraction of the run time with f ,

f =
Ts

Ts + Tp

,

we obtain Amdahl’s law:

Smax(n) =
1

f + (1− f) · 1

n

.

Thus, there is an upper limit for the speedup that is determined by the serial fraction of the
program,

CHAPTER 6. PERFORMANCE 50

Smax
n→∞

=
1

f
,

independent of the number of processors. Consequently, with e.g. a fraction of 5 % serial
code the speedup is limited to 20. In this model, linear speedup (Smax(n) = n) can only be
achieved with f = 0. Wilkinson & Allen (2004, page 27) comment on this as follows:

“If the parallel algorithm did achieve better than n times the speedup over the
current sequential algorithm, the parallel algorithm can certainly be emulated on
a single processor, which suggests that the original sequential algorithm was not
optimal.”

However, the authors point out that under certain conditions superlinear speedup may occur:

“Superlinear speedup, where S(n) > n may be seen on occasion, but usually this
is due to using a suboptimal sequential algorithm or some unique feature of the
architecture that favors the parallel formation. One common reason for superlinear
speedup is the extra memory in the multiprocessor system. For example, suppose
the main memory associated with each processor in the multiprocessor system is
the same as that associated with the processor in a single processor system. Since
the total main memory in the multiprocessor system is larger than that in the single
processor system, and can hold more of the problem data at any instant, it leads
to less, relatively slow disk memory traffic.”

The same consideration should hold if the main memory is compared to the cache memory
(Tanenbaum, 1999). Assuming that the data fits into the main memory of a single processor, no
advantage is gained by increasing the total amount of main memory. However, with increasing
number of processors the total amount of cache memory also increases. The cache memory
is distinguished from main memory by faster access times. Therefore, for an arbitrary piece of
data the expected access time should decrease with an increasing number of processors.

51

Chapter 7

Discussion

7.1 Conclusion and Summary

Network Representation

We have implemnted a new representation of the network that is suited equally well for mul-
tithreaded and distribution simulation of neuronal networks. The concept of virtual processes
provides an elegant way to ensure reproducible results when the number of virtual processes is
kept constant. At the same time it increases the performance of the system, in particular its
scalability, considerably in contrast to the previous version of NEST because the memory used
by different threads is now separated and thus cache thrashing is reduced.

Distributed Simulation and Network Construction

The availability of distributed simulation provides decisive advantages over the multithreaded
simulation scheme. It enables researchers to simulate networks far exceeding the memory
available on a single computer and exploit the computing power of computer clusters. Simula-
taneously this technique reduces network construction time because the network can be built
in parallel.

Connection System

The new connection system uses synapse prototypes, which provide flexible ways to implement
synaptic plasticity and build heterogeneous networks. The framework has a convenient SLI
interface to manage default values for the different types of synapses and change the parameters
of connections.

Performance

The performance of the new simulation kernel is now comparable to Paranel’s. Due to the
new network representation and the new scheduler, the ring buffers of the nodes do not have
to be thread safe anymore. This lowers the risk of cache thrashing and leads to better overall
performance of the application.

CHAPTER 7. DISCUSSION 52

7.2 Critique

Fixed Distribution of Nodes

The nodes are distributed onto the threads and processes by using a hardcoded modulo algo-
rithm. This is certainly the best approach for the general case, but can restrict the flexibility
for certain networks. For example if structured networks are simulated, the activity is mainly
localized to certain areas, that one would like to put on a single computer to minimize the
network traffic.

Equal Number of Thread in all Processes

Currently, the scheduling algorithm requires that each process has to run the same number
of threads. This makes the application of NEST2 on heterogeneous computer clusters mostly
impossible.

Large Number of Proxy Nodes

If a large number of processes is used, like e.g. on large computer clusters Markram (e.g.
2006), the memory requirements due to the proxy nodes may become high. A solution to this
problem has already been given in chapter 2: A lookup-table has to be stored in each virtual
process that can be used to address the nodes.

Scaling of NEST2 with Multithreading

Although the performance of the new kernel has been greatly improved with respect to scal-
ability, one question still remains: why does the multithreaded version scale worse than the
message-passing variant? The gain in performance due to the improvements of the memory
management suggests that cache utilization and memory layout are indeed the main prob-
lems here. Due to the multithreaded approach, a complete separation of memory by thread is
impossible. However, the objects that consume most memory are known. The following list
contains the objects together with the state of memory separation for this kind of object:

• Nodes: the memory of the nodes is separated by the pool allocator.

• Ring buffers: the buffers are allocated in order of threads, and thus separated

• Connections: the connections are allocated in order of creation and not separate. A
solution could be to use the pool allocator also for the Connector objects.

To find other candidates for further optimizations, the only way will be to generate a
detailed profile of NEST’s run time, which will allow an analysis of the time consumption of
the different functions.

Restrictions with Distributed Simulation

Albeit the distributed simulation scheme allows for greater flexibility, it also has some drawbacks
in the current implementation. Only spikes can be sent to remote targets, which limits the
communication between the elements. However, at the moment only spiking neuron models

CHAPTER 7. DISCUSSION 53

are implemented in NEST. Another problem of the distributed simulation setup is that it only
allows script-driven execution of batch jobs, whereas the multithreaded program can also be
used interactively, which is a convenient way of setting up networks and experiment with
different parameters. A possible solution for this is provided in the next section.

7.3 Outlook

Multithreaded Connection Setup

In chapter 4 we pointed out that the time for connection setup of a neuronal system can easily
exceed the simulation time. This is a problem especially for very large networks. In Paranel the
problem can be solved by using multiple processes that connect and simulate the network in
parallel. This is also possible in NEST2. However, parallel connection establishment in a pure
multithreaded simulation setup is not possible in the current implementation. This problem
can be solved by using multiple threads to connect the network by using algorithms similar to
those of the distributed case.

Serial Simulation of Multiple Virtual Processes

To enhance the possibility to obtain reproducible results, a new scheduler could be be imple-
mented that allows the serial simulation of multiple virtual processes without the need to use
several threads or processes.

Make Use of the new Connection Framework

In Paranel a lot of different synapse types are available for the simulation of heterogeneous
networks. The new connection system of NEST allows the same flexibility as Paranel but only
a static type of connection has been implemented so far. The next step will be to port the
synapse types from Paranel to the new connection framework of NEST2.

Distributed SLI

As pointed out earlier, the interpreter supports two modes of operation: interactive at the
command line prompt or script driven as virtual machine (see figure 7.1). A distributed setup
could, in principle, use the same modes, with the difference that the interactive mode has to
be mediated by a local process, the master, which takes part in the simulation and relays the
commands to the other processes, the slaves. In the current implementation of NEST2, the
master-slave mode is not implemented yet. The system has, however, been designed to make
an implementation at a later time easy. Currently, only the script driven mode is available for
distributed simulation setups.

Refined Communication Control

In the current implementation the events are broadcasted to every process in the simulation,
regardless if the node has targets on the receiving process. A solution to this problem is already
implemented in Paranel, where a list of the machines that actually have targets is stored for

CHAPTER 7. DISCUSSION 54

(A)

Simulation

Script

(B)

Simulation

Script

Figure 7.1: The interpreter in a distributed environment: (A) Non-interactive, in batch mode;
Every computer executes only the commands that are relevant for it. (B) Interactive, in
master-slave mode; The master application processes the commands interactively and sends
the commands to the slaves for processing.

each node. This is particularly important for network sizes that go beyound the local networks
within a qubic millimeter of cortex because then the probality for a neuron to have targets on
every machine is smaller.

55

Bibliography

Adobe Systems Inc. (1991). The PostScript Language Reference Manual (2 ed.). Addison-
Wesley.

Aho, A. V., Sethi, R., & Ullman, J. D. (1988). Compilers, principles, techniques, and tools.
Reading, Massachusetts: Addison-Wesley.

Bower, J. M., & Beeman, D. (1997). The Book of GENESIS: Exploring realistic neural models
with the GEneral NEural SImulation System (2 ed.). New York: TELOS, Springer-Verlag-
Verlag.

Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity
(2nd ed.). Berlin: Springer-Verlag-Verlag.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J. Comput. Neurosci. 8(3), 183–208.

Carnevale, T., & Hines, M. (2006). The NEURON Book. Cambridge: Cambridge University
Press.

Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems sim-
ulations. In T. Plesser & V. Macho (Eds.), Forschung und wisschenschaftliches Rechnen,
Beiträge zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, pp. 43–70. Göttingen:
Ges. für Wiss. Datenverarbeitung.

Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1995). SYNOD: an environment for neural
systems simulations. Language interface and tutorial. Technical Report GC-AA-/95-3, Weiz-
mann Institute of Science, The Grodetsky Center for Research of Higher Brain Functions,
Israel.

Finkel, R. A. (1996). Advanced programming languages. Menlo Park, California: Addison-
Wesley.

Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Language
(3 ed.). Addison-Wesley Professional.

Fregnac, Y. (1998). Homeostasis or synaptic plasticity? Nature 391, 845–846.

Fujimoto, R. M. (2000). Parallel and distributed simulation systems. New York: Wiley.

BIBLIOGRAPHY 56

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesely.

Gewaltig, M.-O., & Diesmann, M. (2006). Exploring large-scale models of neural systems with
the neural simulation tool nest. Contribution to CNS 2006.

Gross, J., & Yellen, J. (1999). Graph Theory and its Applications. CRC Press.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. (Lond) 117, 500–544.

Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the
coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5
pyramidal neurons. J. Physiol. (Lond) 533.2, 447–466.

Lewis, B., & Berg, D. J. (1997). Multithreaded Programming With PThreads. Sun Microsys-
tems Press.

Lutz, M. (2001). Programming Python, Second Edition with CD. O’Reilly.

MacGregor, R. J. (1987). Neural and Brain Modeling. San Diego: Academic Press.

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160.

MathWorks (2002). MATLAB The Language of Technical Computing: Using MATLAB.
Natick, MA. 3 Apple Hill Drive, Natick, Mass. 01760-2098.

Message Passing Interface Forum (1994). MPI: A message-passing interface standard. Tech-
nical Report UT-CS-94-230.

Morrison, A., Aertsen, A., & Diesmann, M. (2005). Spike-timing dependent plasticity in
balanced random networks. submitted .

Morrison, A., & Diesmann, M. (2003). Cache effects in distributed simulation of biological
neural networks. Internal report.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing
the boundaries of high connectivity network simulation with distributed computing. Neural
Comput. 17(8), 1776–1801.

Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2005). Exact subthreshold inte-
gration with continuous spike times in discrete time neural network simulations. submitted .

Research Systems Inc. (1987). Interactive Data Language. http://www.rsinc.com/idl/.

Stroustrup, B. (1997). The C++ Programming Language (3 ed.). New York: Addison-Wesely.

Tam, A., & Wang, C. (2000). Efficient scheduling of complete exchange on clusters. In 13th
International Conference on Parallel and Distributed Computing Systems (PDCS 2000), Las
Vegas.

BIBLIOGRAPHY 57

Tanenbaum, A. S. (1999). Structured Computer Organization (4 ed.). Upper Saddle River:
Prentice Hall.

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses.
Neural Comput. 10, 821–835.

Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks
with frequency-dependent synapses. J. Neurosci. 20, RC1 (1–5).

Tuckwell, H. C. (1988). Introduction to Theoretical Neurobiology, Volume 1, Chapter 3, The
Lapique model of the nerve cell, pp. 85–123. Cambridge: Cambridge University Press.

Wilkinson, B., & Allen, M. (2004). Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers (2 ed.). Prentice Hall.

Wolfram, S. (2003). The Mathematica Book (5 ed.). Wolfram Media Incorporated.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems (2 ed.). Amsterdam:
Academic Press.

	Introduction
	Overview
	State of Research
	The Simulation Language Interpreter
	The NEST Simulation Kernel
	The Paranel Simulation Kernel
	Comparing NEST and Paranel

	Task Definition
	Multithreaded and Distributed Simulation
	Connection Management
	Interpreter Integration
	Reproducibility
	Performance Improvements

	Layout of the Thesis

	Network Representation
	The Network in NEST
	The Network in NEST2
	Virtual Processes
	Assigning Nodes to Virtual Processes
	Accessing Nodes in Virtual Processes
	Random Number Generation and Reproducibility
	Multithreaded Representation
	Distributed Representation

	Network Elements and their Interaction
	Nodes
	Node Types
	Ring Buffers
	Memory Management
	Node Construction

	Events

	Connection Management
	Connectors and Connection Prototypes
	Data Compression

	Establishment of Connections
	Type Checking
	Distributed Connection
	Calculation of the Minimal and Maximal Connection Delay

	The SLI Interface
	Connection Functions
	An Example SLI Session
	Building and Connecting a Small Network

	Simulation
	Strategic Considerations
	The Scheduler of NEST2
	Definitions
	Network Calibration
	Network Update
	Communication
	Time Evolution
	Event delivery

	Performance
	Performance on Multiprocessor Computers
	Scaling on Computer Clusters
	Cache Effects and Superlinear Scaling

	Discussion
	Conclusion and Summary
	Critique
	Outlook

	Bibliography

